码迷,mamicode.com
首页 > 其他好文 > 详细

HashMap底层源码与实现逻辑

时间:2020-03-17 19:45:59      阅读:59      评论:0      收藏:0      [点我收藏+]

标签:集合   nbsp   重复判断   无法   创建   pre   table   instance   img   

ConcurrentHashMap性能高于HashTable,都能够完成线程安全操作,

Hashtable中线程安全使用synchronized同步方法进行加锁操作,如果当前一个线程正在访问该集合,其他线程是无法进行访问的,需要进行等待
反之ConcurrentHashMap当中采用分段锁机制

 

JDK1.7和JDK1.8底层实现的区别

JDK1.8版本之前,ConcurrentHashMap使用分段锁技术,将数据分成一段一段的进行村粗,每一个数据段配置一把锁Segment(继承ReentrantLock)
底层采用:Segment+HashEntry
当数据添加时,根据key值找到Segment对应的数据段,然后匹配数据块,采用链表方式进行存储

1.1JDK1.7底层实现

在JDK1.7版本中,ConcurrentHashMap的数据结构是由一个Segment数组和多个HashEntry组成:

 

Segment数组的意义就是将一个大的table分割成多个小的table来进行加锁,也就是上面的提到的锁分离技术,而每一个Segment元素存储的是HashEntry数组+链表,这个和HashMap的数据存储结构一样

 技术图片

 

 

1.2JDK1.8底层实现

JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CAS来操作,整个看起来就像是优化过且线程安全的HashMap,虽然在JDK1.8中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本

 

 技术图片

 

 

 


ConcurrentHashMap底层put方法实现的核心逻辑

public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();    //判断key和value是否为空,如果为空则报异常
int hash = spread(key.hashCode());    //重新计算key的hash值,有效减少Hash值冲突
int binCount = 0;
for (Node<K,V>[] tab = table;;) {    //遍历当前数组当中所有的数据
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)    //判断数组是否为空
tab = initTable();    //如果为空要进行数组的初始化操作
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {    //根据key的Hash值找到位置,如果该位置没有元素
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))    //获取到空的元素,然后重新创建一个新的Node放进去
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)    //判断当前数组元素状态是否需要扩容
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {    //加锁
if (tabAt(tab, i) == f) {    
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&    //判断添加的key和原有key进行Hash值判断以及key值判断,如果相等则覆盖
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {    //判断当前节点的下一个节点是否为空,如果为空则添加到下一个节点当中
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {    //判断当前节点是否为红黑树
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {    //如果为红黑树则创建一个树节点
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)    //根据当前循环次数判断链表中存在多少个数据,如果数据阀值大于等于8
//则进行红黑树转换
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);    //判断是否需要扩容
return null;
}

 



    put方法核心

public V put(K key, V value) {
                        //计算key的Hash值,然后将Hash值以及key值本身和Value传递到putval方法当中
                        return putVal(hash(key), key, value, false, true);
                    }
                    
                    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
                        Node<K,V>[] tab; Node<K,V> p; int n, i;
                        if ((tab = table) == null || (n = tab.length) == 0)                //判断当前数组是否为空,如果为空要进行第一次扩容
                            n = (tab = resize()).length;                                //扩容后将扩容大小交给N
                        if ((p = tab[i = (n - 1) & hash]) == null)                        //判断获取当前数组位置是否存在数据,如果为空则直接插入,否则需要代表当前位置不是空的,不是空的需要判断
                            tab[i] = newNode(hash, key, value, null);                    //如果为空则创建一个新的节点添加到该位置
                        else {
                            Node<K,V> e; K k;
                            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))        //判断Hash值和Key值是否相同,如果相同则需要Value覆盖
                                e = p;
                            else if (p instanceof TreeNode)                                                        //判断当前数组中存放的节点是否是树节点
                                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);                    //则添加树节点即可
                            else {
                                for (int binCount = 0; ; ++binCount) {                                            //循环遍历链表
                                    if ((e = p.next) == null) {                                                    //判断当前数组该位置的值得下一个元素是否为空,如果为空则追加到当前元素后边
                                        p.next = newNode(hash, key, value, null);
                                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                    //添加完毕后判断当前链表节点有多少个,如果节点大于等于8则转换为红黑树
                                            treeifyBin(tab, hash);                                                //treeifyBin判断当前数组是否为空,或者长度是否小于64,如果为空或者小于64
                                                                                                                //则先扩容
                                        break;
                                    }
                                    if (e.hash == hash &&
                                        ((k = e.key) == key || (key != null && key.equals(k))))                    //再次进行Key的重复判断
                                        break;
                                    p = e;
                                }
                            }
                            if (e != null) { // existing mapping for key
                                V oldValue = e.value;
                                if (!onlyIfAbsent || oldValue == null)
                                    e.value = value;
                                afterNodeAccess(e);
                                return oldValue;
                            }
                        }
                        ++modCount;
                        if (++size > threshold)                                                                    //判断当前数组元素个数和阀值进行比较,如果数量大于阀值则需要扩容
                            resize();                                                                            //默认情况下,第一次添加数据的时候,先会进行一次扩容后再添加数据
                        afterNodeInsertion(evict);                                                                //后续都是先添加数据再扩容
                        return null;
                    }

 

    扩容: 默认情况下,数组大小为16,当数组元素 超过大小*负载因子(0.75),如果超过12个元素,则调用resize进行扩容,扩容原来大小的2倍并且重新计算数组中元素的位置,所以比较耗费性能,一般创建集合尽量预知大小,避免多次扩容

 

 get方法核心逻辑:

final Node<K,V> getNode(int hash, Object key) {
                    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
                    if ((tab = table) != null && (n = tab.length) > 0 &&
                        (first = tab[(n - 1) & hash]) != null) {                                //判断数组以及数组对应位置数组元素是否为空
                        if (first.hash == hash && // always check first node
                            ((k = first.key) == key || (key != null && key.equals(k))))            //用get传递过来的Key值和对应位置第一个元素进行比较,如果相等直接返回,如果不等则进行查找
                            return first;
                        if ((e = first.next) != null) {                                            //判断第一个元素的下一个元素是否为空,如果不为空
                            if (first instanceof TreeNode)                                        //如果不为空判断当前节点是否为树节点
                                return ((TreeNode<K,V>)first).getTreeNode(hash, key);            //如果是树节点,直接通过getTreeNode拿到该节点返回
                            do {
                                if (e.hash == hash &&
                                    ((k = e.key) == key || (key != null && key.equals(k))))        //循环一一对比
                                    return e;
                            } while ((e = e.next) != null);
                        }
                    }
                    return null;
                }

 

HashMap底层源码与实现逻辑

标签:集合   nbsp   重复判断   无法   创建   pre   table   instance   img   

原文地址:https://www.cnblogs.com/danxun/p/12512646.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!