码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj 3601 一个人的数论

时间:2020-03-21 23:40:28      阅读:76      评论:0      收藏:0      [点我收藏+]

标签:mat   class   www   有关   href   bzoj   ble   rac   除了   

LINK:一个人的数论

这道题 是到好题。和伯努利数有关 但是我没学过。。

不难 把式子化简成\(\sum_{x|n}\mu(x)\cdot \sum_{i=1}^{\frac{n}{x}}(xi)^d\)

可以发现n巨大无比 我们除了能靠人类智慧拿一些分数之外就没办法了。

但是根据伯努利数 对于\(i^d\)求和是有一些办法的。

存在\(\sum_{i=1}^{n}i^d=\sum_{i=1}^{d+1}v_i n^i\) 其中\(v_i\)是常数。

那么原式还是可以化简的。

\(\sum_{i=1}^{d+1}v_i\sum_{x|n}\mu(x)\cdot x^d\cdot (\frac{n}{x})^i\)

可以发现 后面的东西是积性函数 我们可以对于每个p都求出来对应的答案最后再乘起来。

那么对于质因子\(p^a\)\(\sum_{x|p^a}\mu(x)\cdot x^d\cdot (\frac{p^a}{x})^i\)

当x==1和x==p时才有值 所以总式=\(p^{ai}(1-p^{d-i})\)

考虑一下\(v_i\)怎么求。考虑使用伯努利数来求 就麻烦了 况且我也不会。

不过由于d只有100 可以直接列方程求解。上GAUSS即可。

bzoj 3601 一个人的数论

标签:mat   class   www   有关   href   bzoj   ble   rac   除了   

原文地址:https://www.cnblogs.com/chdy/p/12543024.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!