一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。
简介
分形几何学是一门以不规则几何形态为研究对象的几何学。相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。分形几何学的研究对象为非负实数维数,如0.63、1.58、2.72、log2/log3(参见
康托尔集)。因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。
一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。
由来
客观自然界中许多事物,
具有自相似的“层次”结构,在理想情况下,
甚至具有无穷层次。
适当的放大或缩小事物的几何尺寸,整个结构并不改变。
不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
分形几何学
客观事物都有它自己的特征尺度,要用恰当的尺度去测量。用尺子来测量万里长城,嫌太短,而用来测量大肠杆菌,又嫌太长。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这就是“无标度性”的问题。
湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许多多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态。要描述湍流现象就需要借助流体的的“无标度性”,而湍流中高漩涡区域,就需要用到分形几何学。
产生
在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题依赖于测量时所使用的尺度。
如果用公里作
测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用
分维。
分形几何学
数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于
无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。
这些自然现象,特别是
物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的
吸引子。
多孔介质中的流体运动和它产生的
渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。
电子计算机图形显示协助了人们推开分形几何的大门。这座具有无穷层次结构的宏伟建筑,每一个角落里都存在无限嵌套的迷宫和回廊,促使数学家和科学家深入研究。
法国数学家曼德尔勃罗特这位计算机和数学兼通的人物,对分形几何产生了重大的推动作用。他在1975、1977和1982年先后用法文和英文出版了三本书,特别是《分形——形、机遇和维数》以及《自然界中的分形几何学》,开创了新的数学分支——分形几何学。
内容
基本思想
分形几何图
分形几何学的基本思想是:客观事物具有
自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,称为
自相似性。例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。
维数
维数是几何对象的一个重要特征量,它是几何对象中一个点的位置所需的独立坐标数目。在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成
二维,而把直线或曲线看成一维。也可以稍加推广,认为点是
零维的,还可以引入
高维空间,对于更抽象或更复杂的对象,只要每个局部可以和欧氏空间对应,也容易确定维数。但通常人们习惯于整数的维数。
分形理论
分形理论认为
维数也可以是分数,这类维数是物理学家在研究混沌
吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从
整数扩大到分数,从而突破了一般
拓扑集维数为整数的界限。
分维
维数和测量有着密切的关系,下面我们举例说明一下分维的概念。
当我们画一根直线,如果我们用0维的点来量它,其结果为
无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。
对于我们上面提到的“寇赫岛”曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与“寇赫岛”曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数了,所以存在
分维。经过计算“寇赫岛”曲线的维数是1.2618……
应用领域
分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(
布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更
小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的
分维是2,大大高于它的拓扑维数1。
在某些
电化学反应中,电极附近沉积的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。
自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规则的枝杈,每个枝杈继续分为细杈……,至少有十几次分支的层次,可以用分形几何学去测量。
有人研究了某些云彩边界的几何性质,发现存在从1公里到1000公里的无标度区。小于1公里的云朵,更受地形概貌影响,大于1000公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个
数量级的无标度区,这已经足够了。分形存在于这中间区域。
近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌
吸引子,并从实验数据中计算出它们的
分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。
意义
上世纪80年代初开始的“分形热”经久不息。分形作为一种新的概念和方法,正在许多领域开展应用探索。美国物理学大师
约翰·惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。 中国著名学者
周海中教授认为:
分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;
可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。
分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义 。