码迷,mamicode.com
首页 > 其他好文 > 详细

第二节 数值型特征进行归一化或标准化处理

时间:2020-03-25 14:59:46      阅读:90      评论:0      收藏:0      [点我收藏+]

标签:计算公式   大数   决定   适合   大数据   col   min   就是   main   

数值型特征处理:通过特定的统计方法将数据转换成算法要求的数据,归一化和标准化
# 归一化的计算公式决定了其对异常值很敏感,一旦出现异常值会导致鲁棒性较差,所以归一化只适合传统精确小数据场景
from sklearn.preprocessing import MinMaxScaler

def mm():
    # feature_range指定归一化后的数据范围,不指定就是0-1之间
    mm = MinMaxScaler(feature_range=(2, 3))

    # fit_transform接收数组
    data = mm.fit_transform([[90, 2, 10, 40], [60, 4, 15, 45], [75, 3, 13, 46]])

    print(data)


if __name__ == "__main__":
    mm()
# 标准化也是用来去除量纲的影响,但是在大数据量下,其对异常值的耐受性比较好
from sklearn.preprocessing import StandardScaler

def stand():
    std = StandardScaler()

    # fit_transform接收数组
    data = std.fit_transform([[1, -1, 3], [2, 4, 2], [4, 6, -1]])

    print(data)


if __name__ == "__main__":
    stand()

 

第二节 数值型特征进行归一化或标准化处理

标签:计算公式   大数   决定   适合   大数据   col   min   就是   main   

原文地址:https://www.cnblogs.com/kogmaw/p/12566209.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!