码迷,mamicode.com
首页 > 其他好文 > 详细

深度学习(五):M-H采样

时间:2020-03-26 00:58:14      阅读:91      评论:0      收藏:0      [点我收藏+]

标签:采样   变化   应该   说明   观测   接受   表达   方法   条件   

一、引入

M-H采样用来解决MCMC采样效率低的问题,主要是更改了MCMC中接受率的具体定义,但是这个方法不适用于高维。

 

二、细致平稳条件

从$\pi(i)Q_{ij}\alpha (ij)= \pi(j)Q_{ji}\alpha (ji)$出发(1)式

移项$\alpha (ij)=\alpha (ji)\frac{\pi(j)Q_{ji}}{\pi(i)Q_{ij}}$,(2)式

并且令$\alpha (ji)=1$,

令$\alpha (ij)=min\left \{ \frac{\pi(j)Q_{ji}}{\pi(i)Q_{ij}},1 \right \}$,(3)式

其实这个想法,就是把(1)式,左右两边的$\alpha (ij)$和$\alpha (ji)$同比增大,先只观察$\alpha (ji)$,如果它达到1了,就不再变化,这时候我们再倒回去观测$\alpha (ij)$,按照(2)式,它应该等于这个复杂的除法$\alpha (ji)\frac{\pi(j)Q_{ji}}{\pi(i)Q_{ij}}$,但是,由于它是个接受率,不能大过1,于是得到(3)式,(3)式说明了$\alpha (ij)$要更快达到1。

具体采样见上一篇博文,只是马尔可夫链蒙特卡洛采样中的接受率的表达式改变了而已。

深度学习(五):M-H采样

标签:采样   变化   应该   说明   观测   接受   表达   方法   条件   

原文地址:https://www.cnblogs.com/liuxiangyan/p/12571778.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!