标签:计算 指示 ado 处理 type harris lock 固定 detection
不同方向线条的交点。如下图:
角点是图像中的重要特征,对帮助人们理解、分析图像有重要的作用。角点在保留图像重要特征的同时,可以有效地减少信息的数据量。使信息含量变高,有效地提高了计算的速度,使得实时处理图像的可靠匹配成为可能。对于同一场景,视角发生改变,角点通常是不变的,具有稳定性。
角点检测(corner detection)是计算机视觉系统中获得图像特征的一种方法,由于角点检测的实时性和稳定性,所以角点检测广泛应用于运动检测、图像匹配、视频跟踪、三维建模和目标识别等领域。角点作为一种特征点,角点检测也被称为特征点检测。
大多数角点检测方法检测的是具有特定特征的图像点,不仅仅是“角点”。这些特征在图像中具有具体的坐标,并具有某些数学特征,如局部最小或最大。我们可以利用检测出的这些点,实现我们想要的操作。
现存的角点检测方法都不是十分鲁棒。
角点检测算法的基本思想是使用一个固定窗口(某像素的领域窗口)在图像上进行任意方向的滑动。比较滑动前与滑动后,窗口中像素灰度的变化程度。如果存在任意方向上的滑动,前后有着较大灰度变化,我们可以认为窗口中存在角点。如下图所示:
标签:计算 指示 ado 处理 type harris lock 固定 detection
原文地址:https://www.cnblogs.com/wojianxin/p/12576256.html