标签:因变量 应用 属性 聚类 判断 没有 维数 经济 学生
机器学习分为四大块,分别是classification (分类),regression (回归), clustering (聚类), dimensionality reduction (降维)。
聚类(clustering)
无监督学习的结果。聚类的结果将产生一组集合,集合中的对象与同集合中的对象彼此相似,与其他集合中的对象相异。
没有标准参考的学生给书本分的类别,表示自己认为这些书可能是同一类别的(具体什么类别不知道,没有标签和目标,即不是判断书的好坏(目标,标签),只能凭借特征而分类)。
分类(classification)
有监督学习的两大应用之一,产生离散的结果。
例如向模型输入人的各种数据的训练样本,产生“输入一个人的数据,判断是否患有癌症”的结果,结果必定是离散的,只有“是”或“否”。(即有目标和标签,能判断目标特征是属于哪一个类型)
回归(regression)
有监督学习的两大应用之一,产生连续的结果。
例如向模型输入人的各种数据的训练样本,产生“输入一个人的数据,判断此人20年后今后的经济能力”的结果,结果是连续的,往往得到一条回归曲线。当输入自变量不同时,输出的因变量非离散分布(不仅仅是一条线性直线,多项曲线也是回归曲线)。
1,给定一个样本特征 , 我们希望预测其对应的属性值 , 如果 是离散的, 那么这就是一个分类问题,反之,如果 是连续的实数, 这就是一个回归问题。
2,如果给定一组样本特征 , 我们没有对应的属性值 , 而是想发掘这组样本在 二维空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题。
3,如果我们想用维数更低的子空间来表示原来高维的特征空间, 那么这就是降维问题。
标签:因变量 应用 属性 聚类 判断 没有 维数 经济 学生
原文地址:https://www.cnblogs.com/Javame/p/12587775.html