标签:for 输出 ssi 倒序输出 += lin and ret bin
A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not.
You are given a positive integer nn . Represent it as a sum of minimum number of quasibinary numbers.
The first line contains a single integer \(n\) \((1<=n<=10^{6})\).
In the first line print a single integer \(k\) — the minimum number of numbers in the representation of number \(n\) as a sum of quasibinary numbers.
In the second line print \(k\) numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal \(n\) . Do not have to print the leading zeroes in the numbers. The order of numbers doesn‘t matter. If there are multiple possible representations, you are allowed to print any of them.
9
9
1 1 1 1 1 1 1 1 1
32
3
10 11 11
题意(来自洛谷)
题目描述:给出一个数n,你需要将n写成若干个数的和,其中每个数的十进制表示中仅包含0和1。问最少需要多少个数
输入格式:一行 一个数 n(\(1≤n≤10^6\))
输出格式:最少的数的个数,并给出一种方案。
很显然,最少需要多少个数取决于\(max\)(一个数的每一位),下面举个例子:
\(12321\),组成这个数的最大的数字是\(3\),因此最少\(3\)个满足条件的数就可以构成\(12321\),
分别为\(11111\),\(1110\),\(100\)
这样我们可以将每一位分别处理,这里我是从个位开始处理的
其实这也可以这样理解,\(12321\)是由\(2321\)转移过来的,同理,…
#include<iostream>
#include<cstdio>
using namespace std;
int Ans,num[100];//其实这里定义10就够了,因为最多9个数就一定可以构成n
int main()
{
int n,Res;
scanf("%d",&n);
for(int bit=1;bit<=n;bit*=10)
{
Res=(n/bit)%10;//每一位的数值
Ans=max(Ans,Res);
for(int i=1;i<=Res;++i) num[i]+=bit;
}
printf("%d\n",Ans);
for(;Ans;--Ans) printf("%d ",num[Ans]);//倒序输出,从小到大
putchar(‘\n‘);
return 0;
}
标签:for 输出 ssi 倒序输出 += lin and ret bin
原文地址:https://www.cnblogs.com/hihocoder/p/12587269.html