码迷,mamicode.com
首页 > 其他好文 > 详细

【计算材料学】【一】狄拉克符号补充 矢量与函数的统一性

时间:2020-03-30 12:59:48      阅读:118      评论:0      收藏:0      [点我收藏+]

标签:符号   不能   exist   矢量   两种方法   display   高斯   思想   ace   

(一)投影算符和单位算符

1.取任意力学量算符的分立本征矢集合:

\[\mathinner{| i \rangle}\quad i\in Z^+ \]

??有投影算符pi

\[\hat{p}_i=\mathinner{| i \rangle}\mathinner{\langle i |} \\\space\\Rarr\forall \mathinner{| \psi \rangle}=\sum_j c_j \mathinner{| j \rangle} \\\space\\begin{aligned} \Rarr\hat{p}_i\mathinner{| \psi \rangle}&=\sum_jc_j\mathinner{|i \rangle}\mathinner{\langle i|j \rangle}\&=\sum_jc_j\mathinner{| i \rangle}\delta_{ij}\&=c_i\mathinner{| i \rangle}\quad\text{投影到}\mathinner{| i \rangle}\text{方向} \end{aligned} \\\space\take\quad\hat{I}=\sum_i\mathinner{| i \rangle}\mathinner{\langle i |} \\\space\\begin{aligned} \Rarr\hat{I}\mathinner{| \psi \rangle}&=\sum_i{\mathinner{| i \rangle}(\sum_j{c_j\mathinner{\langle i|j \rangle}})}\&=\sum_i c_i \mathinner{| i \rangle}=\mathinner{| \psi \rangle}\quad{单位算符} \end{aligned} \]

??对于任意一组基矢,满足单位算符等式的称为基矢的封闭性或完备性。例如,对于二维直角坐标系:

\[\mathinner{| 1 \rangle}= \begin{pmatrix} 1\0 \end{pmatrix}\quad \mathinner{| 2 \rangle}= \begin{pmatrix} 0\1 \end{pmatrix} \\\space\\Rarr \sum_i\mathinner{| i \rangle}\mathinner{\langle i |}= \begin{pmatrix} 1\0 \end{pmatrix} \begin{pmatrix} 1&0 \end{pmatrix}+ \begin{pmatrix} 0\1 \end{pmatrix} \begin{pmatrix} 0&1 \end{pmatrix} =\begin{pmatrix} 1 & 0\0 & 1 \end{pmatrix} \]

2.考虑函数情形,先考虑x是离散的n个值,函数值为fn(xi):

\[\mathinner{| f_n \rangle}= \begin{pmatrix} f_n(x_1)\f_n(x_2)\...\f_n(x_n) \end{pmatrix}\quad \mathinner{| x_i \rangle}=\begin{pmatrix} 0\...\0\1\0\...\0 \end{pmatrix}\rarr\text{第i行} \]

??易得如下结论:

\[\mathinner{| x_i \rangle}\mathinner{\langle x_i |}=\hat{p}_i\quad\sum_i\mathinner{| x_i \rangle}\mathinner{\langle x_i |}=\hat{I}\quad\mathinner{\langle x_i|x_j \rangle}=\delta_{ij} \\\space\\begin{aligned} &\mathinner{| f_n \rangle} &&= &&\sum_i\mathinner{| i \rangle}\mathinner{\langle i | f_n \rangle}\&f_n(x_i)\mathinner{| x_i \rangle} &&= &&\mathinner{| x_i \rangle}\mathinner{\langle x_i | f_n \rangle}\&\mathinner{\langle f_n |f_n \rangle} &&= &&\mathinner{\langle f_n | \hat{I} | f_n \rangle} \&&&= && \sum_i|f(x_i)|^2\&\mathinner{\langle f_n |g_n \rangle} &&= &&\mathinner{\langle f_n | \hat{I} | g_n \rangle} \&&&= && \sum_i f^*(x_i)g(x_i)\&\mathinner{| f_n \rangle}+\mathinner{|g_n \rangle} &&= &&\hat{I}(\mathinner{| f_n \rangle}+\mathinner{|g_n \rangle})\&&&= && \sum_i[f(x_i)+g(x_i)]\mathinner{| i \rangle}\&&&= && \begin{pmatrix} f_n(x_1)+g_n(x_1)\f_n(x_2)+g_n(x_2)\...\f_n(x_n)+g_n(x_n) \end{pmatrix}\\end{aligned} \]

??那么,容易拓展到x取R的情况:

\[\begin{aligned} f(x)&=\int\delta(x-x‘)f(x‘)dx‘\&=\int\mathinner{\langle x|x‘ \rangle}\mathinner{\langle x‘|f \rangle}dx‘\&=\mathinner{\langle x|\hat{I}|f\rangle}=\mathinner{\langle x|f \rangle} \end{aligned} \\\space\as \quad \hat{I}=\int\mathinner{|x‘ \rangle}\mathinner{\langle x‘|}dx‘=\int\mathinner{|x \rangle}\mathinner{\langle x|}dx \\\space\\begin{aligned} \Rarr\mathinner{\langle f|g \rangle} &=\mathinner{\langle f| \hat{I} |g \rangle}\&=\int\mathinner{\langle f|x \rangle}\mathinner{\langle x|g \rangle}dx\&=\int{f^*(x)g(x)}dx \end{aligned} \\\space\take\quad\hat{p}_{x_0}=\mathinner{|x_0 \rangle}\mathinner{\langle x_0|} \\\space\\begin{aligned} \Rarr\mathinner{\hat{p}_{x_0}|f \rangle} &=\mathinner{| x_0 \rangle \langle x_0 |f \rangle}\&=f(x_0)\mathinner{| x_0 \rangle} \end{aligned} \]

(二)格兰-施密特正交化与勒让德多项式

??设一组向量线性独立而不正交:

\[\mathinner{| i \rangle}\quad i\in Z^+ :\sum_i c_i{\mathinner{| i \rangle}}=\not 0\quad\exists{i_1=\not i_2}\Rarr\mathinner{\langle i_1|i_2 \rangle}=\not0 \]

??那么有格兰施密特正交化方法:

\[\begin{aligned} \mathinner{| v_i \rangle} &=\mathinner{|i \rangle}-\sum_{n=1}^{i-1}\frac{\mathinner{\langle i|n \rangle}}{\mathinner{\langle n|n \rangle}}\mathinner{| n \rangle}\\mathinner{| u_i \rangle}&=\frac{\mathinner{|v_i \rangle}}{\sqrt{\mathinner{\langle v_i|v_i \rangle}}} \end{aligned} \]

??这等效于如下的过程(减去平行分量):

\[\begin{aligned} \mathinner{|v_1 \rangle}&=\frac{\mathinner{|1 \rangle}}{\mathinner{\langle 1|1 \rangle}}\\mathinner{| v_i \rangle}&=\mathinner{|i \rangle}-\sum_{n=1}^{i-1}\hat{p}_{v_n}\mathinner{|i \rangle}\\&=\mathinner{|i \rangle}-\sum_{n=1}^{i-1}\mathinner{|v_n \rangle}\mathinner{\langle v_n|i \rangle}\\mathinner{| u_i \rangle}&=\frac{\mathinner{|v_i \rangle}}{\sqrt{\mathinner{\langle v_i|v_i \rangle}}} \end{aligned} \]

??取泰勒展开式中x幂次为基矢:

\[\mathinner{| i \rangle}=x^{i-1}\quad i\in Z^+ \]

??以[-1,1]为积分区间,对各基矢正交归一化,有:

\[\begin{aligned} \mathinner{| v_1 \rangle}&=\frac{1}{\sqrt{2}}\\mathinner{| v_2 \rangle}&=x\\mathinner{| v_3 \rangle}&=x^2-\frac{1}{3}\&...\\Rarr\mathinner{| u_1 \rangle}&=\frac{1}{\sqrt2}\\mathinner{| u_2 \rangle}&=\sqrt{\frac{2}{3}}x\\mathinner{| u_3 \rangle}&=\sqrt{\frac{5}{8}}(x^2-\frac{1}{3})\&... \end{aligned}\\]

??un(x)即为勒让德多项式的集合。

(三)求特征向量的另两种方法

1.陶哲轩方法(适用于计算机

??设n阶矩阵A有特征值λi,其对应特征向量vi的第j个分量有如下关系式:

\[|v_{ij}|^2\prod_{k=1;k=\not i}^n (\lambda_i-\lambda_k)=\prod_{k=1}^{n-1}(\lambda_i-\mu_{k}) \]

??其中μkjA去掉第j行第j列元素后的主子矩阵Mj(易证这个矩阵必定厄米)的第k个特征值。设二阶矩阵:

\[A=\begin{pmatrix} \mu_2 & x\x^* & \mu_1 \end{pmatrix}\Rarr Av_i=\lambda_i v_i \quad i=1,2\\\space\\Rarr M_1=\begin{pmatrix} \mu_1 \end{pmatrix}\quad M_2=\begin{pmatrix} \mu_2 \end{pmatrix}\quad\text{特征值显然}\\\space\\begin{aligned} \Rarr |v_{11}|^2&=\frac{\lambda_1-\mu_1}{\lambda_1-\lambda_2}\|v_{12}|^2&=\frac{\lambda_1-\mu_2}{\lambda_1-\lambda_2}\|v_{21}|^2&=\frac{\lambda_1-\mu_1}{\lambda_2-\lambda_1}\|v_{22}|^2&=\frac{\lambda_1-\mu_2}{\lambda_2-\lambda_1}\\end{aligned} \]

2.旋转基矢法(二维实矩阵)

??取二维实矩阵Ω和一个旋转矩阵Ut

\[\Omega= \begin{pmatrix} \Omega_{11}&\Omega_{12}\\Omega_{21}&\Omega_{22} \end{pmatrix} \quad\Omega_{12}=\Omega_{21} \\\space\U^t=\begin{pmatrix} \cos\theta&\sin\theta\-\sin\theta&\cos\theta \end{pmatrix} \\\space\\Rarr U^t\Omega U=\begin{pmatrix} \cos^2\theta\Omega_{11}+\sin^2\theta\Omega{22}+\Omega_{12}\sin{2\theta}& 2\Omega_{12}\sin{2\theta}-(\omega_{11}-\Omega_{22})\cos{2\theta}\2\Omega_{12}\sin{2\theta}-(\omega_{11}-\Omega_{22})\cos{2\theta}& \sin^2\theta\Omega_{11}+\cos^2\theta\Omega{22}+\Omega_{12}\sin{2\theta} \end{pmatrix} \\\space\\overset{对角元为0}{\Rarr}\theta_0=\frac{1}{2}\arctan\frac{2\Omega_{12}}{\Omega_{11}-\Omega_{22}} \\\space\\Rarr \mathinner{| v_1 \rangle}=\begin{pmatrix} \cos\theta_0\\sin\theta_0 \end{pmatrix} \quad \mathinner{| v_2 \rangle}=\begin{pmatrix} -\sin\theta_0\\cos\theta_0 \end{pmatrix} \]

(四)平面波与高斯函数

??对于一个体系的波函数(未知,通常不能通过求解薛定谔方程得到),可以按某种基矢展开,然后利用变分法的思想,通过线性优化得到收敛的近似波函数

??在从头算理论中,基矢一般是高斯波函数;而在第一性原理中,基矢一般是平面波函数

??关于平面波函数的傅里叶展开的狄拉克符号写法

\[k(x)=\mathinner{\langle x|k \rangle}\overset{def}{=}\frac{1}{\sqrt{2\pi}}e^{ikx}\\\space\x(k)=\mathinner{\langle k|x \rangle}\overset{def}{=}\frac{1}{\sqrt{2\pi}}e^{-ikx}\\\space\\Rarr\int\mathinner{|k \rangle}\mathinner{\langle k|}dk=\hat{I}_k \\\space\\begin{aligned} \Rarr f(k)&=\mathinner{\langle k|f \rangle}\&=\mathinner{\langle k | \hat{I}_x | f \rangle}\&=\int_\infty\mathinner{\langle k | x \rangle}\mathinner{\langle x | f \rangle}dx\&=\frac{1}{\sqrt{2\pi}}\int_\infty f(x)e^{-ikx}dx\f(x)&=\mathinner{\langle x|f \rangle}\&=\mathinner{\langle k | \hat{I}_k | f \rangle}\&=\int_\infty\mathinner{\langle x | k \rangle}\mathinner{\langle k | f \rangle}dx\&=\frac{1}{\sqrt{2\pi}}\int_\infty f(k)e^{ikx}dx\\end{aligned}\\\space\\begin{aligned} \Rarr f(x)&=\frac{1}{2\pi}\int_\infty \int_\infty f(x‘)e^{-ikx‘}dx‘e^{ikx}dk\&=\int_\infty f(x‘)\frac{1}{2\pi}\int_\infty e^{ik(x-x‘)}dkdx‘\&=\int_\infty f(x‘)\delta(x-x‘)dx‘ \end{aligned} \\\space\\overset{同理}{\Rarr}\frac{1}{2\pi}\int_\infty e^{i(k-k‘)x}dx=\delta(k-k‘) \]

??

【计算材料学】【一】狄拉克符号补充 矢量与函数的统一性

标签:符号   不能   exist   矢量   两种方法   display   高斯   思想   ace   

原文地址:https://www.cnblogs.com/Rita-Raz-Litt/p/CM-1.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!