标签:virtual pre section rtu 维数 矩阵 png cti info
因为深度学习会应用到我们大学时候学习的数学知识---线性代数。(矩阵当年想起来还是挺有意思的,有考研的经历都有感觉)
而在计算机里面如何展示矩阵的计算和应用,就需要运用到NumPy
,是Python的一个外部库。
开始学习一下如何应用Numpy
进行数组和矩阵的运算。
import numpy as np
x= np.array([1.0,2.0,3.0])
print(x)
y = np.array([3.0, 6.0, 9.0])
print(x+y)
print(x-y)
演示效果如下:
(zsdpy1) zsd@zsd-virtual-machine:~/ZAI$ python section01.py
[1. 2. 3.]
[ 4. 8. 12.]
[-2. -4. -6.]
生成一个简单的2*2矩阵,并计算两个简单的矩阵
import numpy as np
A= np.array([[1,2],[5,6]])
print(A)
A.shape
B = np.array([[3, 0],[0, 6]])
print(A+B)
演示效果:
(zsdpy1) zsd@zsd-virtual-machine:~/ZAI$ python section02.py
[[1 2]
[5 6]]
[[ 4 2]
[ 5 12]]
其中乘法计算的,就是读书时计算矩阵的方式,图片效果如下:
代码如下:
import numpy as np
A= np.array([[1,2],[5,6]])
B = np.array([10, 20])
print(A)
print(B)
print(A*B)
演示效果:
(zsdpy1) zsd@zsd-virtual-machine:~/ZAI$ python section03.py
[[1 2]
[5 6]]
[10 20]
[[ 10 40]
[ 50 120]]
标签:virtual pre section rtu 维数 矩阵 png cti info
原文地址:https://www.cnblogs.com/zhangshengdong/p/12613246.html