码迷,mamicode.com
首页 > 其他好文 > 详细

基于KNN的发票识别

时间:2020-04-01 16:21:37      阅读:63      评论:0      收藏:0      [点我收藏+]

标签:port   文件夹   http   matrix   直方图均衡化   vector   ram   阈值   先后   

项目概况:

有一个PDF文件,里面的每页都是一张发票,把每页的发票单独存为一个PDF并用该发票的的发票号码进行文件的命名,发票号码需要OCR识别,即识别下图中红色方块的内容。

 

技术图片

 一:拆分PDF

现有一个PDF文件,里面有很多张发票图片,每张发票占一页

技术图片

 

我们先把这整个PDF拆分为单独的PDF

使用PyPDF2这个包

代码如下,基本上每句都写了注释

from PyPDF2 import PdfFileWriter,PdfFileReader

def test1(file_path,folder_path,num,end_page,start_page=0):
    """
    :param file_path: pdf文件路径
    :param folder_path: 存放路径
    :param num: 拆分后的pdf存在几个原pdf页数
    :param end_page: 拆分到的最后一页
    :param start_page: 起始的页数,默认为0
    :return:
    """
    # 打开PDF文件
    pdf_file = PdfFileReader(open(file_path, rb))
    # 获取pdf的页数
    pdf_file_num = pdf_file.getNumPages()
    # 如果输入的end_page页数比pdf文件的页数大或者小于等于0,让停止的页数为pdf最大的页数
    if end_page>pdf_file_num or end_page<=0:
        end_page=pdf_file_num
    # 从起始页到最后一页进行遍历
    for i in range(start_page,end_page,num):
        #创建一个PdfFileWriter的对象
        out_put = PdfFileWriter()
        # 给out_put这个对象传num数的页,项目中每个发票都只占了1页,所以num为1,如果发票占据2页,那么num为2
        for k in range(num):
            out_put.addPage(pdf_file.getPage(i))
        # 设置保存的路径
        out_file = folder_path + "\\" + f"{i}.pdf"
        # 把out_put里面的数据写入到文件中
        out_put.write(open(out_file, wb))

运行结果如下:

技术图片

 

 

 二:把PDF变成图片,并进行切分

现在发票是PDF格式,我们需要转为图片格式,而且我需要的发票号码在发票的右上角,所以对图片进行大致的切分有助于提高后面的识别速率。

这里解释一下rect = page.rect,rect可以获取页面的大小,rect.tl,tl为topleft的缩写,也就是左上角的意思,所以有tl(左上),tf(右上),bl(左下),bf(右下)等坐标

import fitz

def my_fitz(pdfPath, imagePath):
    """
    :param pdfPath: pdf的路径
    :param imagePath: 图片文件夹的路径,不是图片路径
    :return:
    """
    # 打开pdf文件
    pdfDoc = fitz.open(pdfPath)
    for pg in range(pdfDoc.pageCount):
        page = pdfDoc[pg]
        rotate = int(0)
        # 每个尺寸的缩放系数为2,生成的图像的分辨率会提高,参数也可以自由设置,没有硬性要求
        zoom_x = 2
        zoom_y = 2
        # 这个函数可以理解为,把zoom_x,zoom_y这两个参数保存起来
        mat = fitz.Matrix(zoom_x, zoom_y).preRotate(rotate)
        rect = page.rect  # 页面大小
        # mp为截取矩形的左上角坐标
        mp=rect.tr-(500/zoom_x,0)
        # tem为截取矩形的右下角坐标
        tem=rect.tr+(0,200/zoom_y)
        # clip为截取的矩形
        clip = fitz.Rect(mp, tem)
        # 进行图片的截取
        pix = page.getPixmap(matrix=mat, alpha=False,clip=clip)
        if not os.path.exists(imagePath):  # 判断存放图片的文件夹是否存在
            os.makedirs(imagePath)  # 若图片文件夹不存在就创建
        new_img_path = imagePath + / + 0.png
        pix.writePNG(new_img_path)  # 将图片写入指定的文件夹内

        return new_img_path

运行结果如图所示:

技术图片

 

 

 

 技术图片

 

三:检测边缘,把中间的数字截取出来

边缘检测我使用的CV2模块,注意使用cv2.threshold函数时,里面的图片必须为灰度图,不然会报错

import cv2

def my_croping(imgpath):
    # 读取图片的路径
    img = cv2.imread(imgpath)
    # 把该图片转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    #设置固定级别的阈值应用于矩阵
    ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    # 寻找边缘,返回的contours为边缘数据的集合
    _, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_TC89_L1)
    # 画出边缘,-1为画出所有的边缘,如果为任意自然数那么为contours的索引,(0,0,255)为颜色,最后的2是线条的粗细,数值越大,线条越粗
    cv2.drawContours(img, contours, -1, (0, 0, 255), 2)
    # 展示图片
    cv2.imshow("pic", img)
    # 等待,当参数为0时,为无限等待,直到有键盘指令
    cv2.waitKey(0)

运行结果:

技术图片

 

可见上一步骤的图片中的发票号码已经被圈起来了,但是有很多不必要的东西也被圈进来了,所以我们需要对初始的的contours进行筛选。

contours是一个包含多个列表的列表,我们需要的中间的数字,观察可知,中间数字的边缘比较大,所以我们只需要通过len()方法就可以进行初步的过滤

contours.sort(key=lambda x: len(x), reverse=True)
for i in range(len(contours)):
        if len(contours[i]) > 10:
            continue
        else:
            contours = contours[:i]
            break

加入过滤后运行结果:

技术图片

 

 我们初步的缩小了范围,下面需要制定具体的规则来确定想要获得的对象

首先,我们先获取各个边缘所组成的矩形的坐标

rect_list=[]
for i in range(len(contours)):
        cont_ = contours[i]
        # 找到boundingRect
        rect = cv2.boundingRect(cont_)
        print(rect)
        rect_list.append(rect)
        

运行结果如下:

技术图片

从左到右分别是x,y,宽度,高度

很明显,我们要找的坐标是8个,宽度,高度差不多的坐标,n为阈值,初始为10,当两个矩阵的宽和高直接的差的绝对值在阈值范围内,填入集合,如果这样的元素超过8个,那么则找到号码对应的矩阵,在传入之前,用X坐标的大小进行排序,能减少很多时间

def xyhw(li):
    n=10
    while n<30:
        for i in range(len(li)):
            tem_li=[li[i]]
            for k in range(i+1,len(li)):
                if abs(li[i][1]-li[k][1])+abs(li[i][2]-li[k][2])+abs(li[i][3]-li[k][3])<n:
                    tem_li.append(li[k])
            if len(tem_li)>=8:
                return tem_li
        n+=1

但是这个筛选完,还有一个问题,有时候会出现分割后NO没有分割掉的情况,所以需要过滤掉NO

 

def filter_li(li):
    if len(li)>8:
        li = li[:9]
    interval=li[0][0]-li[1][0]
    test_interval=li[-2][0]-li[-1][0]
    if test_interval/interval>1.5:
        li=li[:-1]
    return li

这样我们就可以获得号码的八个矩阵坐标,我们只需要把这八个矩阵融合即可

#进行排序
rect_list.sort(key= lambda x:x[0],reverse=True)
#进行筛选
rect_list=filter_li(rect_list)
#x0,y0为矩阵的左上角,x1,y1为矩阵的右下角
y0=rect_list[0][1]
y1=rect_list[0][1]+rect_list[0][3]
x0=rect_list[-1][0]
x1=rect_list[0][0]+rect_list[0][2]
print(y0,y1,x0,x1)
#进行图片切割
cropImg = img2[y0:y1,x0:x1]
#写入图片
cv2.imwrite(img_path,cropImg)

可以获得这样的图片:

技术图片

 

 

四:把图片中的数字分别截取出来

第四步和第三步的原理一样,先边缘检测,然后获取矩形坐标后进行截图,比第三步简单不少,这里就不多赘述了

 

import cv2
import numpy as np


def xyhw(li):
    n=10
    tem_li=[]
    while n<30:
        for i in range(len(li)):
            tem_li=[li[i]]
            for k in range(i+1,len(li)):
                if abs(li[i][1]-li[k][1])+abs(li[i][2]-li[k][2])+abs(li[i][3]-li[k][3])<n:
                    tem_li.append(li[k])
            if len(tem_li)>=8:
                return tem_li
        n+=1
    else:
        return tem_li


# 将img的高度调整为28,先后对图像进行如下操作:直方图均衡化,形态学,阈值分割
def pre_treat(img):
    height_ = 28
    ratio_ = float(img.shape[1]) / float(img.shape[0])
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = cv2.resize(gray, (int(ratio_ * height_), height_))
    gray = cv2.equalizeHist(gray)
    _, binary = cv2.threshold(gray, 190, 255, cv2.THRESH_BINARY)
    img_ = 255 - binary  # 反转:文字置为白色,背景置为黑色
    return img_


def get_roi(contours):
    rect_list = []
    for i in range(len(contours)):
        rect = cv2.boundingRect(contours[i])
        if rect[3] > 10:
            rect_list.append(rect)
    return rect_list


def get_rect(img):
    _, contours, hierarchy = cv2.findContours(img,cv2.RETR_TREE, cv2.CHAIN_APPROX_TC89_L1)
    rect_list = get_roi(contours)
    rect_list.sort(key= lambda x:x[0],reverse=True)
    rect_list=xyhw(rect_list)
    
    return rect_list

def change_(img):
    length = 28
    h,w = img.shape
    H = np.float32([[1,0,(length-w)/2],[0,1,(length-h)/2]])
    img = cv2.warpAffine(img,H,(length,length))
    M = cv2.getRotationMatrix2D((length/2,length/2),0,26/float(img.shape[0]))
    return cv2.warpAffine(img,M,(length,length))

def fenge(img_path):
    cont = 0
    img = cv2.imread(img_path)
    img = pre_treat(img)
    contours = get_rect(img)
    folder_path=r"C:\Users\86173\Desktop\jetbrains2019.2\new\tem"
    file_list=[]
    # img=cv2.drawContours(img,contours,2,(0, 0, 255),3)
    print("*********************%s*************" %contours)
    for i in range(len(contours)):
        y0 = contours[i][1]
        y1 = contours[i][1] + contours[i][3]
        x0 = contours[i][0]
        x1 = contours[i][0] + contours[i][2]
        print(y0, y1, x0, x1)
        cropImg = img[y0:y1, x0:x1]
        cropImg = change_(cropImg)
        fenge_img=rf"{folder_path}\{cont}.png"
        cv2.imwrite(fenge_img, cropImg)
        cont += 1
        file_list.append(fenge_img)
    return file_list

五:苦力活

通过第四步的分割,我们可以得到分割后的数字,那么第一步就是给这些分割后的数字命名,类似这样:

技术图片

 

建议在分割的时候,用input输入来命名嗷

 第二步就是把这些图片转为矩阵存入txt中:

from PIL import Image
import numpy

def noise_remove_pil(image_name, k):
    """
    8邻域降噪
    Args:
        image_name: 图片文件命名
        k: 判断阈值

    Returns:

    """

    def calculate_noise_count(img_obj, w, h):
        """
        计算邻域非白色的个数
        Args:
            img_obj: img obj
            w: width
            h: height
        Returns:
            count (int)
        """
        count = 0
        width, height = img_obj.size
        for _w_ in [w - 1, w, w + 1]:
            for _h_ in [h - 1, h, h + 1]:
                if _w_ > width - 1:
                    continue
                if _h_ > height - 1:
                    continue
                if _w_ == w and _h_ == h:
                    continue
                if img_obj.getpixel((_w_, _h_)) < 190:  # 这里因为是灰度图像,设置小于230为非白色
                    count += 1
        return count

    img = Image.open(image_name)
    # 灰度
    gray_img = img.convert(L)

    w, h = gray_img.size
    for _w in range(w):
        for _h in range(h):
            if _w == 0 or _h == 0:
                gray_img.putpixel((_w, _h), 255)
                continue
            # 计算邻域非白色的个数
            pixel = gray_img.getpixel((_w, _h))
            if pixel == 255:
                continue

            if calculate_noise_count(gray_img, _w, _h) < k:
                gray_img.putpixel((_w, _h), 255)
    # gray_img = gray_img.resize((32, 32), Image.LANCZOS)
    gray_img.save(image_name)
    # gray_img.show()
    im = numpy.array(gray_img)
    for i in range(im.shape[0]):  # 转化为二值矩阵
        for j in range(im.shape[1]):
            if im[i, j] <190:
                im[i, j] = 1
            else:
                im[i, j] = 0
    return im




if __name__ == __main__:
    for i in range(0,10):
        for k in range(0,100):
            png_file_path=rf"C:\Users\86173\Desktop\jetbrains2019.2\model_test\{i}_{k}.png"
            txt_file_path=rf"C:\Users\86173\Desktop\jetbrains2019.2\model_test\txt_folder\{i}_{k}.txt"
            try:
                im = noise_remove_pil(png_file_path, 4)
                with open(txt_file_path,at,encoding=utf-8)as f:
                    for n in im:
                        f.writelines(str(n).replace("[","").replace("]","").replace(" ","")+"\n")
            except Exception as e:
                continue

运行结果:

技术图片

 

 技术图片

 

获得这样的文件,那么准备工作就结束了

六:KNN模型的使用

 导入sklearn使用knn模型非常简单,代码量很少

import numpy as np
from os import listdir
from sklearn.neighbors import KNeighborsClassifier as kNN

def np2vector(im):
    returnVect = np.zeros((1, 784))
    for i in range(28):
        # 读一行数据
        lineStr = im[i]
        # 每一行的前28个元素依次添加到returnVect中
        for j in range(28):
            returnVect[0, 28 * i + j] = int(lineStr[j])
    # 返回转换后的1x784向量
    return returnVect
def img2vector(filename):
    #创建1x784零向量
    returnVect = np.zeros((1, 784))
    #打开文件
    fr = open(filename)
    #按行读取
    for i in range(28):
        #读一行数据
        lineStr = fr.readline()
        #每一行的前28个元素依次添加到returnVect中
        for j in range(28):

            returnVect[0,28*i+j] = int(lineStr[j])
    #返回转换后的1x784向量
    return returnVect

def handwritingClassTest(im):
    #测试集的Labels
    hwLabels = []
    #返回trainingDigits目录下的文件名
    trainingFileList = listdir(r"C:\Users\86173\Desktop\jetbrains2019.2\model_test\txt_folder")
    #返回文件夹下文件的个数
    m = len(trainingFileList)
    #初始化训练的Mat矩阵,测试集
    trainingMat = np.zeros((m, 784))
    #从文件名中解析出训练集的类别
    for i in range(m):
        #获得文件的名字
        fileNameStr = trainingFileList[i]
        #获得分类的数字
        classNumber = int(fileNameStr.split(_)[0])
        #将获得的类别添加到hwLabels中
        hwLabels.append(classNumber)
        trainingMat[i,:] = img2vector(rC:\Users\86173\Desktop\jetbrains2019.2\model_test\txt_folder\%s % (fileNameStr))
    #构建kNN分类器
    neigh = kNN(n_neighbors = 4, algorithm = auto)
    #拟合模型, trainingMat为测试矩阵,hwLabels为对应的标签
    neigh.fit(trainingMat, hwLabels)
    
    vectorUnderTest = np2vector(im)

    classifierResult = neigh.predict(vectorUnderTest)
    return classifierResult

有这个模型,我们调用一下,就可以获取到对应的发票号码了

最终运行结果:

技术图片

 

 

 

 

 最后:

knn的原理比较简单,但是因为是在工作之余写的,写的比较匆忙,有些步骤说的不够详细,如果有什么问题欢迎在评论区留言,如果有改进方案那就更好了,博主只是一个初入机器学习的小学生,欢迎各位大佬的指点,谢谢

 

基于KNN的发票识别

标签:port   文件夹   http   matrix   直方图均衡化   vector   ram   阈值   先后   

原文地址:https://www.cnblogs.com/98WDJ/p/12605353.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!