标签:比较 编译 尺寸 val aac 正是 bsp lis spl
手里有一张图片如下,是经过旋转的,如何通过程序自动对它进行旋转校正? (旋转校正是行分割、字符识别等后续工作的基础)
傅里叶变换可以用于将图像从时域转换到频域,对于分行的文本,其频率谱上一定会有一定的特征,当图像旋转时,其频谱也会同步旋转,因此找出这个特征的倾角,就可以将图像旋转校正回去。
先来对原始图像进行一下傅里叶变换,需要这么几步:
1、以灰度方式读入原文件
2、将图像扩展到合适的尺寸以方便快速变换
OpenCV中的DFT对图像尺寸有一定要求,需要用GetOptimalDFTSize方法来找到合适的大小,根据这个大小建立新的图像,把原图像拷贝过去,多出来的部分直接填充0。
3、进行DFT运算
DFT要分别计算实部和虚部,这里准备2个单通道的图像,实部从原图像中拷贝数据,虚部清零,然后把它们Merge为一个双通道图像再进行DFT计算,完成后再Split开。
4、对数据进行适当调整
上一步中得到的实部保留下来作为变换结果,并计算幅度:magnitude = sqrt(real^2 + imaginary^2)。
考虑到幅度变化范围很大,还要用log函数把数值范围缩小。
最后经过归一化,就会得到图像的特征谱了。
此时图像是这样的:
5、移动中心
DFT操作的结果低频部分位于四角,高频部分在中心,习惯上会把频域原点调整到中心去,也就是把低频部分移动到中心。
最终得到图像如下:
可以明显的看到过中心有一条倾斜的直线,可以用霍夫变换把它检测出来,然后计算角度。 需要以下几步:
1、二值化
把刚才得到的傅里叶谱放到0-255的范围,然后进行二值化,此处以150作为分界点。
得到图像如下:
2、Houge直线检测
由于HoughLine2方法只接受8UC1格式的图片,因此要先进行转换再调用HoughLine2方法,这里的threshold参数取的100,能够检测出3条直线来。
3、找到符合条件的那条斜线,获取角度
4、角度转换
由于DFT的特点,只有输入图像是正方形时,检测到的角度才是真正文本的旋转角度,但原图像明显不是,因此还要根据长宽比进行变换,最后得到的angelD就是真正的旋转角度了。
5、旋转校正
这一步比较简单了,构建一个仿射变换矩阵,然后调用WarpAffine进行变换,就得到校正后的图像了。最后显示到界面上。
最终结果如下,效果还不错:
最后放完整代码: