标签:span lang 要求 除法 names class 情况 type 传送门
首先将n减去所有的Ci,于是是原问题转换为:n个相同的球放入m个不同盒子里,不能为空,求方案数.
根据插空法:n个球,放到m个箱子里去不能为空,也就是有m-1块板子放在n-1个空隙之间
那么组合数求解也就是C(n-1,m-1)
除法求余有误差所以先求分母的逆元,转化为分子*逆元%mod的形式
在模为素数p的情况下,有费马小定理
a^(p-1)=1(mod p)
那么a^(p-2)=a^-1(mod p)
也就是说a的逆元为a^(p-2)
那么快速幂一下求逆元就好了。
#include <bits/stdc++.h>
using namespace std;
const int mod=1000000007;
const int maxn=1000009;
typedef long long ll;
int n,m;
ll fc[maxn+10];
ll quickpow(ll a,ll n)
{
ll ans=1;
while(n)
{
if(n&1) ans=ans*a%mod;
a=a*a%mod;
n>>=1;
}
return ans;
}
ll C(int n,int k)
{
ll fm=fc[k]*fc[n-k]%mod;//求b的逆元
//因为a/b%mod,除法取模会出现问题,所以要求逆元
return fc[n]*quickpow(fm,mod-2)%mod;
}
int main()
{
fc[0]=1;
for(int i=1;i<=maxn;i++)
fc[i]=fc[i-1]*i%mod;
cin>>n>>m;
for(int i=1;i<=m;i++)
{
ll l;cin>>l;
n-=l;
}
//n个苹果,放到m个箱子里去不能为空
//也就是有m-1块板子放在n-1个空隙之间
cout<<C(n-1,m-1);
}
标签:span lang 要求 除法 names class 情况 type 传送门
原文地址:https://www.cnblogs.com/iss-ue/p/12654836.html