标签:llb mat auth optimize lag form ocs 自定义对象 速度
感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。感谢作者分享-http://bjbsair.com/2020-04-07/tech-info/30664.html
如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例:
@misc{chollet2015keras,
title={Keras},
author={Chollet, Fran\c{c}ois and others},
year={2015},
publisher={GitHub},
howpublished={\\url{https://github.com/keras-team/keras}},
}
如果你以 TensorFlow 或 CNTK 后端运行,只要检测到任何可用的 GPU,那么代码将自动在 GPU 上运行。
如果你以 Theano 后端运行,则可以使用以下方法之一:
方法 1: 使用 Theano flags。
THEANO_FLAGS=device=gpu,floatX=float32 python my_keras_script.py
"gpu" 可能需要根据你的设备标识符(例如gpu0,gpu1等)进行更改。
方法 2: 创建 .theanorc: 指导教程
方法 3: 在代码的开头手动设置 theano.config.device, theano.config.floatX:
import theano
theano.config.device = ‘gpu‘
theano.config.floatX = ‘float32‘
我们建议使用 TensorFlow 后端来执行这项任务。有两种方法可在多个 GPU 上运行单个模型:数据并行和设备并行。
在大多数情况下,你最需要的是数据并行。
数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本处理不同部分的输入数据。Keras 有一个内置的实用函数 keras.utils.multi_gpu_model,它可以生成任何模型的数据并行版本,在多达 8 个 GPU 上实现准线性加速。
有关更多信息,请参阅 multi_gpu_model 的文档。这里是一个快速的例子:
from keras.utils import multi_gpu_model
# 将 `model` 复制到 8 个 GPU 上。
# 假定你的机器有 8 个可用的 GPU。
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss=‘categorical_crossentropy‘,
optimizer=‘rmsprop‘)
# 这个 `fit` 调用将分布在 8 个 GPU 上。
# 由于 batch size 为 256,每个 GPU 将处理 32 个样本。
parallel_model.fit(x, y, epochs=20, batch_size=256)
设备并行性包括在不同设备上运行同一模型的不同部分。对于具有并行体系结构的模型,例如有两个分支的模型,这种方式很合适。
这种并行可以通过使用 TensorFlow device scopes 来实现。这里是一个简单的例子:
# 模型中共享的 LSTM 用于并行编码两个不同的序列
input_a = keras.Input(shape=(140, 256))
input_b = keras.Input(shape=(140, 256))
shared_lstm = keras.layers.LSTM(64)
# 在一个 GPU 上处理第一个序列
with tf.device_scope(‘/gpu:0‘):
encoded_a = shared_lstm(tweet_a)
# 在另一个 GPU上 处理下一个序列
with tf.device_scope(‘/gpu:1‘):
encoded_b = shared_lstm(tweet_b)
# 在 CPU 上连接结果
with tf.device_scope(‘/cpu:0‘):
merged_vector = keras.layers.concatenate([encoded_a, encoded_b],
axis=-1)
为了正确地使用 Keras,以下是必须了解和理解的一些常见定义:
不建议使用 pickle 或 cPickle 来保存 Keras 模型。
你可以使用 model.save(filepath) 将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:
你可以使用 keras.models.load_model(filepath) 重新实例化模型。load_model 还将负责使用保存的训练配置项来编译模型(除非模型从未编译过)。
例子:
from keras.models import load_model
model.save(‘my_model.h5‘) # 创建 HDF5 文件 ‘my_model.h5‘
del model # 删除现有模型
# 返回一个编译好的模型
# 与之前那个相同
model = load_model(‘my_model.h5‘)
另请参阅如何安装 HDF5 或 h5py 以在 Keras 中保存我的模型?,查看有关如何安装 h5py 的说明。
如果您只需要保存模型的结构,而非其权重或训练配置项,则可以执行以下操作:
# 保存为 JSON
json_string = model.to_json()
# 保存为 YAML
yaml_string = model.to_yaml()
生成的 JSON/YAML 文件是人类可读的,如果需要还可以手动编辑。
你可以从这些数据建立一个新的模型:
# 从 JSON 重建模型:
from keras.models import model_from_json
model = model_from_json(json_string)
# 从 YAML 重建模型:
from keras.models import model_from_yaml
model = model_from_yaml(yaml_string)
如果您只需要 模型的权重,可以使用下面的代码以 HDF5 格式进行保存。
请注意,我们首先需要安装 HDF5 和 Python 库 h5py,它们不包含在 Keras 中。
model.save_weights(‘my_model_weights.h5‘)
假设你有用于实例化模型的代码,则可以将保存的权重加载到具有相同结构的模型中:
model.load_weights(‘my_model_weights.h5‘)
如果你需要将权重加载到不同的结构(有一些共同层)的模型中,例如微调或迁移学习,则可以按层的名字来加载权重:
model.load_weights(‘my_model_weights.h5‘, by_name=True)
例子:
"""
假设原始模型如下所示:
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘))
model.add(Dense(3, name=‘dense_2‘))
...
model.save_weights(fname)
"""
# 新模型
model = Sequential()
model.add(Dense(2, input_dim=3, name=‘dense_1‘)) # 将被加载
model.add(Dense(10, name=‘new_dense‘)) # 将不被加载
# 从第一个模型加载权重;只会影响第一层,dense_1
model.load_weights(fname, by_name=True)
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制:
from keras.models import load_model
# 假设你的模型包含一个 AttentionLayer 类的实例
model = load_model(‘my_model.h5‘, custom_objects={‘AttentionLayer‘: AttentionLayer})
或者,你可以使用 自定义对象作用域:
from keras.utils import CustomObjectScope
with CustomObjectScope({‘AttentionLayer‘: AttentionLayer}):
model = load_model(‘my_model.h5‘)
自定义对象的处理与 load_model, model_from_json, model_from_yaml 的工作方式相同:
from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={‘AttentionLayer‘: AttentionLayer})
Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测试时是关闭的。
此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练完后计算的,因而误差较小。
一个简单的方法是创建一个新的 Model 来输出你所感兴趣的层:
from keras.models import Model
model = ... # 创建原始模型
layer_name = ‘my_layer‘
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)
或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例如:
from keras import backend as K
# 以 Sequential 模型为例
get_3rd_layer_output = K.function([model.layers[0].input],
[model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
同样,你可以直接建立一个 Theano 或 TensorFlow 函数。
注意,如果你的模型在训练和测试阶段有不同的行为(例如,使用 Dropout, BatchNormalization 等),则需要将学习阶段标志传递给你的函数:
get_3rd_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[3].output])
# 测试模式 = 0 时的输出
layer_output = get_3rd_layer_output([x, 0])[0]
# 测试模式 = 1 时的输出
layer_output = get_3rd_layer_output([x, 1])[0]
你可以使用 model.train_on_batch(x,y) 和 model.test_on_batch(x,y) 进行批量训练与测试。请参阅 模型文档。
或者,你可以编写一个生成批处理训练数据的生成器,然后使用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。
你可以在 CIFAR10 example 中找到实践代码。
你可以使用 EarlyStopping 回调:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor=‘val_loss‘, patience=2)
model.fit(x, y, validation_split=0.2, callbacks=[early_stopping])
更多信息请查看 callbacks 文档。
如果您将 model.fit 中的 validation_split 参数设置为 0.1,那么使用的验证数据将是最后 10% 的数据。如果设置为 0.25,就是最后 25% 的数据。注意,在提取分割验证集之前,数据不会被混洗,因此验证集仅仅是传递的输入中最后一个 x% 的样本。
所有 epoch 都使用相同的验证集(在同一个 fit 中调用)。
是的,如果 model.fit中的 shuffle参数设置为 True(默认值),则训练数据将在每个 epoch 混洗。
验证集永远不会混洗。
model.fit 方法返回一个 History 回调,它具有包含连续误差的列表和其他度量的 history 属性。
hist = model.fit(x, y, validation_split=0.2)
print(hist.history)
「冻结」一个层意味着将其排除在训练之外,即其权重将永远不会更新。这在微调模型或使用固定的词向量进行文本输入中很有用。
您可以将 trainable 参数(布尔值)传递给一个层的构造器,以将该层设置为不可训练的:
frozen_layer = Dense(32, trainable=False)
另外,可以在实例化之后将网络层的 trainable 属性设置为 True 或 False。为了使之生效,在修改 trainable 属性之后,需要在模型上调用 compile()。这是一个例子:
x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)
frozen_model = Model(x, y)
# 在下面的模型中,训练期间不会更新层的权重
frozen_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
layer.trainable = True
trainable_model = Model(x, y)
# 使用这个模型,训练期间 `layer` 的权重将被更新
# (这也会影响上面的模型,因为它使用了同一个网络层实例)
trainable_model.compile(optimizer=‘rmsprop‘, loss=‘mse‘)
frozen_model.fit(data, labels) # 这不会更新 `layer` 的权重
trainable_model.fit(data, labels) # 这会更新 `layer` 的权重
使 RNN 具有状态意味着每批样品的状态将被重新用作下一批样品的初始状态。
当使用有状态 RNN 时,假定:
要在 RNN 中使用状态,你需要:
重置累积状态:
例子:
x # 输入数据,尺寸为 (32, 21, 16)
# 将步长为 10 的序列输送到模型中
model = Sequential()
model.add(LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True))
model.add(Dense(16, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘, loss=‘categorical_crossentropy‘)
# 训练网络,根据给定的前 10 个时间步,来预测第 11 个时间步:
model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16)))
# 网络的状态已经改变。我们可以提供后续序列:
model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16)))
# 重置 LSTM 层的状态:
model.reset_states()
# 另一种重置方法:
model.layers[0].reset_states()
请注意,predict, fit, train_on_batch, predict_classes 等方法全部都会更新模型中有状态层的状态。这使你不仅可以进行有状态的训练,还可以进行有状态的预测。
你可以通过调用 .pop() 来删除 Sequential 模型中最后添加的层:
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=784))
model.add(Dense(32, activation=‘relu‘))
print(len(model.layers)) # "2"
model.pop()
print(len(model.layers)) # "1"
我们提供了以下图像分类模型的代码和预训练的权重:
它们可以使用 keras.applications 模块进行导入:
from keras.applications.xception import Xception
from keras.applications.vgg16 import VGG16
from keras.applications.vgg19 import VGG19
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.mobilenet import MobileNet
from keras.applications.densenet import DenseNet121
from keras.applications.densenet import DenseNet169
from keras.applications.densenet import DenseNet201
from keras.applications.nasnet import NASNetLarge
from keras.applications.nasnet import NASNetMobile
from keras.applications.mobilenet_v2 import MobileNetV2
model = VGG16(weights=‘imagenet‘, include_top=True)
有关一些简单的用法示例,请参阅 Applications 模块的文档。
有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。
VGG16 模型也是以下几个 Keras 示例脚本的基础:
你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix文档。
你也可以直接使用 HDF5 数据集:
import h5py
with h5py.File(‘input/file.hdf5‘, ‘r‘) as f:
x_data = f[‘x_data‘]
model.predict(x_data)
所有 Keras 数据存储的默认目录是:
$HOME/.keras/
注意,Windows 用户应该将 $HOME 替换为 %USERPROFILE%。如果 Keras 无法创建上述目录(例如,由于权限问题),则使用 /tmp/.keras/ 作为备份。
Keras配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如下所示:
{
"image_data_format": "channels_last",
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow"
}
它包含以下字段:
同样,缓存的数据集文件(如使用 get_file() 下载的文件)默认存储在 $HOME/.keras/datasets/ 中。
在模型的开发过程中,能够在一次次的运行中获得可复现的结果,以确定性能的变化是来自模型还是数据集的变化,或者仅仅是一些新的随机样本点带来的结果,有时候是很有用处的。
首先,你需要在程序启动之前将 PYTHONHASHSEED 环境变量设置为 0(不在程序本身内)。对于 Python 3.2.3 以上版本,它对于某些基于散列的操作具有可重现的行为是必要的(例如,集合和字典的 item 顺序,请参阅 Python 文档和 issue #2280 获取更多详细信息)。设置环境变量的一种方法是,在这样启动 python 时:
$ cat test_hash.py
print(hash("keras"))
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
-8127205062320133199
$ python3 test_hash.py # 无法复现的 hash (Python 3.2.3+)
3204480642156461591
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
$ PYTHONHASHSEED=0 python3 test_hash.py # 可复现的 hash
4883664951434749476
此外,当使用 TensorFlow 后端并在 GPU 上运行时,某些操作具有非确定性输出,特别是 tf.reduce_sum()。这是因为 GPU 并行运行许多操作,因此并不总能保证执行顺序。由于浮点数的精度有限,即使添加几个数字,也可能会产生略有不同的结果,具体取决于添加它们的顺序。你可以尝试避免某些非确定性操作,但有些操作可能是由 TensorFlow 在计算梯度时自动创建的,因此在 CPU 上运行代码要简单得多。为此,你可以将 CUDA_VISIBLE_DEVICES 环境变量设置为空字符串,例如:
$ CUDA_VISIBLE_DEVICES="" PYTHONHASHSEED=0 python your_program.py
下面的代码片段提供了一个如何获得可复现结果的例子 - 针对 Python 3 环境的 TensorFlow 后端。
import numpy as np
import tensorflow as tf
import random as rn
# 以下是 Numpy 在一个明确的初始状态生成固定随机数字所必需的。
np.random.seed(42)
# 以下是 Python 在一个明确的初始状态生成固定随机数字所必需的。
rn.seed(12345)
# 强制 TensorFlow 使用单线程。
# 多线程是结果不可复现的一个潜在因素。
# 更多详情,见: https://stackoverflow.com/questions/42022950/
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
from keras import backend as K
# `tf.set_random_seed()` 将会以 TensorFlow 为后端,
# 在一个明确的初始状态下生成固定随机数字。
# 更多详情,见: https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
# 剩余代码 ...
为了将你的 Keras 模型保存为 HDF5 文件,例如通过 keras.callbacks.ModelCheckpoint,Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装。在基于 Debian 的发行版本上,你需要再额外安装 libhdf5:
sudo apt-get install libhdf5-serial-dev
如果你不确定是否安装了 h5py,则可以打开 Python shell 并通过下面的命令加载模块
import h5py
如果模块导入没有错误,那么说明模块已经安装成功,否则你可以在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。
标签:llb mat auth optimize lag form ocs 自定义对象 速度
原文地址:https://www.cnblogs.com/lihanlin/p/12657735.html