码迷,mamicode.com
首页 > 其他好文 > 详细

混沌分形之逻辑斯蒂(Logistic)映射系统

时间:2014-11-06 08:08:00      阅读:330      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   io   color   ar   os   使用   for   

      前几天,有个同事看到我生成的一幅逻辑斯蒂分岔图像后,问我:“这是咪咪吗?”我回答:“淫者见淫。”好吧,这里将生成几种分岔映射图形,包括逻辑斯蒂映射系统,正弦映射系统和曼德勃罗映射系统。实际上这几种图形算不上分形,只不过它与我写的其他分形对象使用相同的基类,所以也将其列入混沌分形的范畴。

      关于基类FractalEquation的定义及相关软件见:混沌与分形

(1)逻辑斯蒂映射系统

// 逻辑斯蒂映射系统
class LogisticMap : public FractalEquation
{
public:
    LogisticMap()
    {
        m_StartX = 0.0f;
        m_StartY = 0.0f;
        m_StartZ = 0.0f;

        m_ParamA = 0.0f;
        m_ParamB = 4.0f;

        m_nIterateCount = 100;
    }

    void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
    {
        float R = (float)rand()/RAND_MAX;
        float k = m_ParamA + (m_ParamB - m_ParamA) * R;
        outX = R*4.0f;

        outY = (float)rand()/RAND_MAX;
        for (int i = 0; i < m_nIterateCount; i++)
        {
            outY = k*outY*(1-outY);
        }
        outY *= 2;

        outZ = z;
    }

    bool IsValidParamA() const {return true;}
    bool IsValidParamB() const {return true;}

private:
    int m_nIterateCount;
};

bubuko.com,布布扣

调节下参数后的图形:

bubuko.com,布布扣

(2)正弦映射系统

// 正弦映射系统
class SinMap : public FractalEquation
{
public:
    SinMap()
    {
        m_StartX = 0.0f;
        m_StartY = 0.0f;
        m_StartZ = 0.0f;

        m_ParamA = -2*PI;
        m_ParamB = 2*PI;

        m_nIterateCount = 64;
    }

    void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
    {
        float R = (float)rand()/RAND_MAX;
        float k = m_ParamA + (m_ParamB - m_ParamA) * R;
        outX = R*4.0f;

        outY = (float)rand()/RAND_MAX;
        for (int i = 0; i < m_nIterateCount; i++)
        {
            outY = k*sinf(outY);
        }

        outY *= 0.5f;

        outZ = z;
    }

    bool IsValidParamA() const {return true;}
    bool IsValidParamB() const {return true;}

private:
    int m_nIterateCount;
};

bubuko.com,布布扣

(3)曼德勃罗映射系统

// 曼德勃罗映射系统
class MandelbrotMap : public FractalEquation
{
public:
    MandelbrotMap()
    {
        m_StartX = 0.0f;
        m_StartY = 0.0f;
        m_StartZ = 0.0f;

        m_ParamA = -2.0f;
        m_ParamB = 0.0f;

        m_nIterateCount = 64;
    }

    void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
    {
        float R = (float)rand()/RAND_MAX;
        float k = m_ParamA + (m_ParamB - m_ParamA) * R;
        outX = R*4.0f;

        outY = (float)rand()/RAND_MAX;
        for (int i = 0; i < m_nIterateCount; i++)
        {
            outY = outY*outY + k;
        }

        outZ = z;
    }

    bool IsValidParamA() const {return true;}
    bool IsValidParamB() const {return true;}

private:
    int m_nIterateCount;
};

bubuko.com,布布扣

最后发下被我同事当成MM的逻辑斯蒂分岔图像:

bubuko.com,布布扣

 之前我还写过一篇关于逻辑斯蒂的文章:混沌数学之logistic模型

混沌分形之逻辑斯蒂(Logistic)映射系统

标签:style   blog   http   io   color   ar   os   使用   for   

原文地址:http://www.cnblogs.com/WhyEngine/p/4069203.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!