码迷,mamicode.com
首页 > 其他好文 > 详细

P1439 【模板】最长公共子序列 题解

时间:2020-04-10 21:11:09      阅读:77      评论:0      收藏:0      [点我收藏+]

标签:复杂   names   这一   最长公共子序列   lan   直接   mat   include   排列   

CSDN同步

原题链接

简要题意:

给定两个 \(1\) ~ \(n\) 的排列,求其 最长公共子序列

嗯,下面给出若干算法吧。

算法一

不管它是 \(1\) ~ \(n\) 的排列这一性质。

\(\text{LCS}\)(即最长公共子序列)的套路方法:

\(f_{i,j}\) 表示 \(a_1\) ~ \(a_i\)\(b_1\) ~ \(b_j\) 的最长公共子序列。那么不考虑边界问题,则存在:

\[f_{i,j} = \begin{cases} f_{i-1,j-1}+ 1 , a_i = b_j \\max(f_{i,j-1} , f_{i-1,j}) \end{cases}\]

显然,当前位相等则一起缩,否则一个缩。

时间复杂度:\(O(n^2)\).

实际得分:\(50pts\).

算法二

嗯,你去百度上搜了一下 \(\text{LCS}\) 的求法,然后发现最优的 \(\text{dp}\) 就是 \(O(n^2)\)

但是注意到一个性质 ,两个数组都是 \(1\) ~ \(n\) 的排列。

所以今天我们要秀出什么操作呢!

5 
3 2 1 4 5
1 2 3 4 5

嗯,如果我们把 3 2 1 4 5 变成 1 2 3 4 5,即建立一种关系为:

3 - 1
2 - 2
1 - 3
4 - 4
5 - 5

然后 1 2 3 4 5 它就变成了 3 2 1 4 5 (这纯属巧合啊)。

你发现,通过这样一波操作,其实 \(\text{LCS}\) 本质就是 \(b_i\) 中找到若干个在 \(a_i\) 中有序出现的子序列。

显然一波操作之后 \(a_i\) 有序,然后就是直接求 \(b_i\)\(\text{LIS}\)(最长上升子序列)即可。因为任意的两个 \(x < y\) 显然对应的 \(a_i\) 也满足有该序列。

时间复杂度:\(O(n \log n)\).

实际得分:\(100pts\).

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

const int N=1e5+1;

inline int read(){char ch=getchar();int f=1;while(ch<‘0‘ || ch>‘9‘) {if(ch==‘-‘) f=-f; ch=getchar();}
	int x=0;while(ch>=‘0‘ && ch<=‘9‘) x=(x<<3)+(x<<1)+ch-‘0‘,ch=getchar();return x*f;}

int a2[N],a1[N],be[N];
int b[N],f[N],ans,n;

int main(){
	n=read(); for(int i=1;i<=n;i++)
		a1[i]=read(),be[a1[i]]=i; //建立对应关系
	for(int i=1;i<=n;i++) a2[i]=read();
	for(int i=1;i<=n;i++) {
		if(be[a2[i]]>b[ans]) { //正常套路 LIS
			b[++ans]=be[a2[i]]; f[i]=ans; continue;
		} int t=lower_bound(b+1,b+1+ans,be[a2[i]])-b;
		b[t]=be[a2[i]]; f[i]=t;
	} printf("%d\n",ans);
	return 0;
}

P1439 【模板】最长公共子序列 题解

标签:复杂   names   这一   最长公共子序列   lan   直接   mat   include   排列   

原文地址:https://www.cnblogs.com/bifanwen/p/12676102.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!