标签:情况 影响 item container 算法 单词 search ports hello
什么是分词
分词就是指将一个文本转化成一系列单词的过程,也叫文本分析,在Elasticsearch中称之为Analysis。
举例:我是中国人 --> 我/是/中国人
结果:
{ "tokens": [ { "token": "hello", "start_offset": 0, "end_offset": 5, "type": "<ALPHANUM>", "position": 0 }, { "token": "world", "start_offset": 6, "end_offset": 11, "type": "<ALPHANUM>", "position": 1 } ] }
在结果中不仅可以看出分词的结果,还返回了该词在文本中的位置。
中文分词
中文分词的难点在于,在汉语中没有明显的词汇分界点,如在英语中,空格可以作为分隔符,如果分隔不正确就会造成歧义。
如:
我/爱/炒肉丝
我/爱/炒/肉丝
常用中文分词器,IK、jieba、THULAC等,推荐使用IK分词器。
K Analyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出了3个大版本。最初,它是以开源项目Luence为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IK Analyzer 3.0则发展为面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。
采用了特有的“正向迭代最细粒度切分算法“,具有80万字/秒的高速处理能力 采用了多子处理器分析模式,支持:英文字母(IP地址、Email、URL)、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。 优化的词典存储,更小的内存占用
IK分词器 Elasticsearch插件地址:https://github.com/medcl/elasticsearch-analysis-ik
[root@dalianpai ~]# docker run -p 9200:9200 -d -v /root/ik:/usr/share/elasticsearch/plugins/ik --name elasticsearch 3fd2f723b598 8378a1865408d30a279f9e057115cf4e68cfc4360fa2fe3866072ea9b820a27f [root@dalianpai ~]# docker ps -l CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 8378a1865408 3fd2f723b598 "/docker-entrypoin..." 3 seconds ago Up 2 seconds 0.0.0.0:9200->9200/tcp, 9300/tcp elasticsearch
结果:
{ "tokens": [ { "token": "我", "start_offset": 0, "end_offset": 1, "type": "CN_CHAR", "position": 0 }, { "token": "是", "start_offset": 1, "end_offset": 2, "type": "CN_CHAR", "position": 1 }, { "token": "中国人", "start_offset": 2, "end_offset": 5, "type": "CN_WORD", "position": 2 }, { "token": "中国", "start_offset": 2, "end_offset": 4, "type": "CN_WORD", "position": 3 }, { "token": "国人", "start_offset": 3, "end_offset": 5, "type": "CN_WORD", "position": 4 } ] }
可以看到,已经对中文进行了分词。
全文搜索
全文搜索两个最重要的方面是:
{ "acknowledged": true, "shards_acknowledged": true, "index": "topcheer" }
批量插入数据
结果:
{ "took": 213, "errors": false, "items": [ { "index": { "_index": "topcheer", "_type": "person", "_id": "AXFzovfLg3Eko2bZmO_B", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "created": true, "status": 201 } }, { "index": { "_index": "itcast", "_type": "person", "_id": "AXFzovfLg3Eko2bZmO_C", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "created": true, "status": 201 } }, { "index": { "_index": "itcast", "_type": "person", "_id": "AXFzovfLg3Eko2bZmO_D", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "created": true, "status": 201 } }, { "index": { "_index": "itcast", "_type": "person", "_id": "AXFzovfLg3Eko2bZmO_E", "_version": 1, "result": "created", "_shards": { "total": 2, "successful": 1, "failed": 0 }, "created": true, "status": 201 } } ] }
单词搜索
结果:
{ "took": 38, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 1.3123269, "hits": [ { "_index": "itcast", "_type": "person", "_id": "AXFzovfLg3Eko2bZmO_D", "_score": 1.3123269, "_source": { "name": "王五", "age": 22, "mail": "333@qq.com", "hobby": "羽毛球、篮球、游泳、听音乐" }, "highlight": { "hobby": [ "羽毛球、篮球、游泳、听<em>音</em><em>乐</em>" ] } } ] } }
过程说明:
1. 检查字段类型
爱好 hobby 字段是一个 text 类型( 指定了IK分词器),这意味着查询字符串本身也应该被分词。
2. 分析查询字符串 。
将查询的字符串 “音乐” 传入IK分词器中,输出的结果是单个项 音乐。因为只有一个单词项,所以 match 查询执行的是单个底层 term 查询。
3. 查找匹配文档 。
用 term 查询在倒排索引中查找 “音乐” 然后获取一组包含该项的文档
4. 为每个文档评分 。
用 term 查询计算每个文档相关度评分 _score ,这是种将 词频(term frequency,即词 “音乐” 在相关文档的hobby 字段中出现的频率)和 反向文档频率(inverse document frequency,即词 “音乐” 在所有文档的hobby 字段中出现的频率),以及字段的长度(即字段越短相关度越高)相结合的计算方式。
多词搜索
结果:
{ "took": 5, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 3, "max_score": 1.2632889, "hits": [ { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_K", "_score": 1.2632889, "_source": { "name": "王五", "age": 22, "mail": "333@qq.com", "hobby": "羽毛球、篮球、游泳、听音乐" }, "highlight": { "hobby": [ "羽毛球、<em>篮球</em>、游泳、听<em>音乐</em>" ] } }, { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_L", "_score": 0.42327404, "_source": { "name": "赵六", "age": 23, "mail": "444@qq.com", "hobby": "跑步、游泳、篮球" }, "highlight": { "hobby": [ "跑步、游泳、<em>篮球</em>" ] } }, { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_J", "_score": 0.2887157, "_source": { "name": "李四", "age": 21, "mail": "222@qq.com", "hobby": "羽毛球、乒乓球、足球、篮球" }, "highlight": { "hobby": [ "羽毛球、乒乓球、足球、<em>篮球</em>" ] } } ] } }
可以看到,包含了“音乐”、“篮球”的数据都已经被搜索到了。
可是,搜索的结果并不符合我们的预期,因为我们想搜索的是既包含“音乐”又包含“篮球”的用户,显然结果返回的“或”的关系。
在Elasticsearch中,可以指定词之间的逻辑关系,如下:
结果:
{ "took": 7, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 1.2632889, "hits": [ { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_K", "_score": 1.2632889, "_source": { "name": "王五", "age": 22, "mail": "333@qq.com", "hobby": "羽毛球、篮球、游泳、听音乐" }, "highlight": { "hobby": [ "羽毛球、<em>篮球</em>、游泳、听<em>音乐</em>" ] } } ] } }
可以看到结果符合预期。
前面我们测试了“OR” 和 “AND”搜索,这是两个极端,其实在实际场景中,并不会选取这2个极端,更有可能是选取这种,或者说,只需要符合一定的相似度就可以查询到数据,在Elasticsearch中也支持这样的查询,通过minimum_should_match来指定匹配度,如:70%;
示例:
结果:
{ "took": 3, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 3, "max_score": 1.2632889, "hits": [ { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_K", "_score": 1.2632889, "_source": { "name": "王五", "age": 22, "mail": "333@qq.com", "hobby": "羽毛球、篮球、游泳、听音乐" }, "highlight": { "hobby": [ "羽毛球、<em>篮球</em>、游泳、听<em>音乐</em>" ] } }, { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_L", "_score": 0.42327404, "_source": { "name": "赵六", "age": 23, "mail": "444@qq.com", "hobby": "跑步、游泳、篮球" }, "highlight": { "hobby": [ "跑步、游泳、<em>篮球</em>" ] } }, { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_J", "_score": 0.2887157, "_source": { "name": "李四", "age": 21, "mail": "222@qq.com", "hobby": "羽毛球、乒乓球、足球、篮球" }, "highlight": { "hobby": [ "羽毛球、乒乓球、足球、<em>篮球</em>" ] } } ] } }
组合搜索
在搜索时,也可以使用过滤器中讲过的bool组合查询,示例:
上面搜索的意思是:
搜索结果中必须包含篮球,不能包含音乐,如果包含了游泳,那么它的相似度更高。
结果:
{ "took": 5, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 1.2458471, "hits": [ { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_L", "_score": 1.2458471, "_source": { "name": "赵六", "age": 23, "mail": "444@qq.com", "hobby": "跑步、游泳、篮球" }, "highlight": { "hobby": [ "跑步、<em>游泳</em>、<em>篮球</em>" ] } }, { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_J", "_score": 0.2887157, "_source": { "name": "李四", "age": 21, "mail": "222@qq.com", "hobby": "羽毛球、乒乓球、足球、篮球" }, "highlight": { "hobby": [ "羽毛球、乒乓球、足球、<em>篮球</em>" ] } } ] } }
评分的计算规则
bool 查询会为每个文档计算相关度评分 _score , 再将所有匹配的 must 和 should 语句的分数 _score 求和,最后除以 must 和 should 语句的总数。
must_not 语句不会影响评分; 它的作用只是将不相关的文档排除。默认情况下,should中的内容不是必须匹配的,如果查询语句中没有must,那么就会至少匹配其中一个。当然了,也可以通过minimum_should_match参数进行控制,该值可以是数字也可以的百分比。
示例:
结果:
{ "took": 3, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 1.8243669, "hits": [ { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_K", "_score": 1.8243669, "_source": { "name": "王五", "age": 22, "mail": "333@qq.com", "hobby": "羽毛球、篮球、游泳、听音乐" }, "highlight": { "hobby": [ "羽毛球、<em>篮球</em>、<em>游泳</em>、听<em>音乐</em>" ] } }, { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_L", "_score": 1.2458471, "_source": { "name": "赵六", "age": 23, "mail": "444@qq.com", "hobby": "跑步、游泳、篮球" }, "highlight": { "hobby": [ "跑步、<em>游泳</em>、<em>篮球</em>" ] } } ] } }
权重
有些时候,我们可能需要对某些词增加权重来影响该条数据的得分。如下:
搜索关键字为“游泳篮球”,如果结果中包含了“音乐”权重为10,包含了“跑步”权重为2。
结果:
{ "took": 5, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 10.595525, "hits": [ { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_K", "_score": 10.595525, "_source": { "name": "王五", "age": 22, "mail": "333@qq.com", "hobby": "羽毛球、篮球、游泳、听音乐" }, "highlight": { "hobby": [ "羽毛球、<em>篮球</em>、<em>游泳</em>、听<em>音乐</em>" ] } }, { "_index": "topcheer", "_type": "person", "_id": "AXFzrtEJg3Eko2bZmO_L", "_score": 4.1034093, "_source": { "name": "赵六", "age": 23, "mail": "444@qq.com", "hobby": "跑步、游泳、篮球" }, "highlight": { "hobby": [ "<em>跑步</em>、<em>游泳</em>、<em>篮球</em>" ] } } ]
标签:情况 影响 item container 算法 单词 search ports hello
原文地址:https://www.cnblogs.com/dalianpai/p/12694298.html