码迷,mamicode.com
首页 > 其他好文 > 详细

19_对项目的主从redis架构进行QPS压测以及水平扩容支撑更高QPS

时间:2020-04-17 23:36:02      阅读:83      评论:0      收藏:0      [点我收藏+]

标签:default   connect   set   incr   复杂度   load   cli   cond   mil   

你如果要对自己刚刚搭建好的redis做一个基准的压测,测一下你的redis的性能和QPS(query per second)

redis自己提供的redis-benchmark压测工具,是最快捷最方便的,当然啦,这个工具比较简单,用一些简单的操作和场景去压测

1、对redis读写分离架构进行压测,单实例写QPS+单实例读QPS

redis-3.2.8/src

./redis-benchmark -h 192.168.31.187

-c <clients> Number of parallel connections (default 50)
-n <requests> Total number of requests (default 100000)
-d <size> Data size of SET/GET value in bytes (default 2)

根据你自己的高峰期的访问量,在高峰期,瞬时最大用户量会达到10万+,-c 100000,-n 10000000,-d 50

./redis-benchmark -c 1000 -n 1000 -d 50

各种基准测试,直接出来

1核1G,虚拟机

====== PING_INLINE ======
100000 requests completed in 1.28 seconds
50 parallel clients
3 bytes payload
keep alive: 1

99.78% <= 1 milliseconds
99.93% <= 2 milliseconds
99.97% <= 3 milliseconds
100.00% <= 3 milliseconds
78308.54 requests per second

====== PING_BULK ======
100000 requests completed in 1.30 seconds
50 parallel clients
3 bytes payload
keep alive: 1

99.87% <= 1 milliseconds
100.00% <= 1 milliseconds
76804.91 requests per second

====== SET ======
100000 requests completed in 2.50 seconds
50 parallel clients
3 bytes payload
keep alive: 1

5.95% <= 1 milliseconds
99.63% <= 2 milliseconds
99.93% <= 3 milliseconds
99.99% <= 4 milliseconds
100.00% <= 4 milliseconds
40032.03 requests per second

====== GET ======
100000 requests completed in 1.30 seconds
50 parallel clients
3 bytes payload
keep alive: 1

99.73% <= 1 milliseconds
100.00% <= 2 milliseconds
100.00% <= 2 milliseconds
76628.35 requests per second

====== INCR ======
100000 requests completed in 1.90 seconds
50 parallel clients
3 bytes payload
keep alive: 1

80.92% <= 1 milliseconds
99.81% <= 2 milliseconds
99.95% <= 3 milliseconds
99.96% <= 4 milliseconds
99.97% <= 5 milliseconds
100.00% <= 6 milliseconds
52548.61 requests per second

====== LPUSH ======
100000 requests completed in 2.58 seconds
50 parallel clients
3 bytes payload
keep alive: 1

3.76% <= 1 milliseconds
99.61% <= 2 milliseconds
99.93% <= 3 milliseconds
100.00% <= 3 milliseconds
38684.72 requests per second

====== RPUSH ======
100000 requests completed in 2.47 seconds
50 parallel clients
3 bytes payload
keep alive: 1

6.87% <= 1 milliseconds
99.69% <= 2 milliseconds
99.87% <= 3 milliseconds
99.99% <= 4 milliseconds
100.00% <= 4 milliseconds
40469.45 requests per second

====== LPOP ======
100000 requests completed in 2.26 seconds
50 parallel clients
3 bytes payload
keep alive: 1

28.39% <= 1 milliseconds
99.83% <= 2 milliseconds
100.00% <= 2 milliseconds
44306.60 requests per second

====== RPOP ======
100000 requests completed in 2.18 seconds
50 parallel clients
3 bytes payload
keep alive: 1

36.08% <= 1 milliseconds
99.75% <= 2 milliseconds
100.00% <= 2 milliseconds
45871.56 requests per second

====== SADD ======
100000 requests completed in 1.23 seconds
50 parallel clients
3 bytes payload
keep alive: 1

99.94% <= 1 milliseconds
100.00% <= 2 milliseconds
100.00% <= 2 milliseconds
81168.83 requests per second

====== SPOP ======
100000 requests completed in 1.28 seconds
50 parallel clients
3 bytes payload
keep alive: 1

99.80% <= 1 milliseconds
99.96% <= 2 milliseconds
99.96% <= 3 milliseconds
99.97% <= 5 milliseconds
100.00% <= 5 milliseconds
78369.91 requests per second

====== LPUSH (needed to benchmark LRANGE) ======
100000 requests completed in 2.47 seconds
50 parallel clients
3 bytes payload
keep alive: 1

15.29% <= 1 milliseconds
99.64% <= 2 milliseconds
99.94% <= 3 milliseconds
100.00% <= 3 milliseconds
40420.37 requests per second

====== LRANGE_100 (first 100 elements) ======
100000 requests completed in 3.69 seconds
50 parallel clients
3 bytes payload
keep alive: 1

30.86% <= 1 milliseconds
96.99% <= 2 milliseconds
99.94% <= 3 milliseconds
99.99% <= 4 milliseconds
100.00% <= 4 milliseconds
27085.59 requests per second

====== LRANGE_300 (first 300 elements) ======
100000 requests completed in 10.22 seconds
50 parallel clients
3 bytes payload
keep alive: 1

0.03% <= 1 milliseconds
5.90% <= 2 milliseconds
90.68% <= 3 milliseconds
95.46% <= 4 milliseconds
97.67% <= 5 milliseconds
99.12% <= 6 milliseconds
99.98% <= 7 milliseconds
100.00% <= 7 milliseconds
9784.74 requests per second

====== LRANGE_500 (first 450 elements) ======
100000 requests completed in 14.71 seconds
50 parallel clients
3 bytes payload
keep alive: 1

0.00% <= 1 milliseconds
0.07% <= 2 milliseconds
1.59% <= 3 milliseconds
89.26% <= 4 milliseconds
97.90% <= 5 milliseconds
99.24% <= 6 milliseconds
99.73% <= 7 milliseconds
99.89% <= 8 milliseconds
99.96% <= 9 milliseconds
99.99% <= 10 milliseconds
100.00% <= 10 milliseconds
6799.48 requests per second

====== LRANGE_600 (first 600 elements) ======
100000 requests completed in 18.56 seconds
50 parallel clients
3 bytes payload
keep alive: 1

0.00% <= 2 milliseconds
0.23% <= 3 milliseconds
1.75% <= 4 milliseconds
91.17% <= 5 milliseconds
98.16% <= 6 milliseconds
99.04% <= 7 milliseconds
99.83% <= 8 milliseconds
99.95% <= 9 milliseconds
99.98% <= 10 milliseconds
100.00% <= 10 milliseconds
5387.35 requests per second

====== MSET (10 keys) ======
100000 requests completed in 4.02 seconds
50 parallel clients
3 bytes payload
keep alive: 1

0.01% <= 1 milliseconds
53.22% <= 2 milliseconds
99.12% <= 3 milliseconds
99.55% <= 4 milliseconds
99.70% <= 5 milliseconds
99.90% <= 6 milliseconds
99.95% <= 7 milliseconds
100.00% <= 8 milliseconds
24869.44 requests per second

我们这个读写分离这一块的第一讲

大部分情况下来说,看你的服务器的机器性能和配置,机器越牛逼,配置越高

单机上十几万,单机上二十万

很多公司里,给一些低配置的服务器,操作复杂度

大公司里,都是公司会提供统一的云平台,比如京东、腾讯、BAT、其他的一些、小米、美团

虚拟机,低配

搭建一些集群,专门为某个项目,搭建的专用集群,4核4G内存,比较复杂的操作,数据比较大

几万,单机做到,差不多了

redis提供的高并发,至少到上万,没问题

几万~十几万/二十万不等

QPS,自己不同公司,不同服务器,自己去测试,跟生产环境还有区别

生产环境,大量的网络请求的调用,网络本身就有开销,你的redis的吞吐量就不一定那么高了

QPS的两个杀手:一个是复杂操作,lrange,挺多的; value很大,2 byte,我之前用redis做大规模的缓存

做商品详情页的cache,可能是需要把大串数据,拼接在一起,作为一个json串,大小可能都几k,几个byte

2、水平扩容redis读节点,提升度吞吐量

就按照上一节课讲解的,再在其他服务器上搭建redis从节点,单个从节点读请QPS在5万左右,两个redis从节点,所有的读请求打到两台机器上去,承载整个集群读QPS在10万+

19_对项目的主从redis架构进行QPS压测以及水平扩容支撑更高QPS

标签:default   connect   set   incr   复杂度   load   cli   cond   mil   

原文地址:https://www.cnblogs.com/hg-super-man/p/12723011.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!