标签:阈值 nes 向量 sam amp end for val function
计算14通道得脑电数据吗,将得出的样本熵插入Excel表格
a = zeros(1,14); b = a‘; for i =1:14 b(i) = SampEn(d1_1(i,1:3000),2,0.2*std(d1_1(i,1:3000))); end xlswrite(‘C:\Users\25626\Desktop\滤波后数据\14\样本熵\样本熵.xlsx‘,b,‘Sheet1‘,‘J‘);%数据写入A列
调用的SampEn函数
function SampEnVal = SampEn(data, m, r) % SampEn 计算时间序列data的样本熵 % 输入:data是数据一维行向量 % m重构维数,一般选择1或2,优先选择2,一般不取m>2 % r 阈值大小,一般选择r=0.1~0.25*Std(data) 数据偏差 % 输出:SampEnVal样本熵值大小 data = data(:)‘; N = length(data); Nkx1 = 0; Nkx2 = 0; for k = N - m:-1:1 x1(k, :) = data(k:k + m - 1); x2(k, :) = data(k:k + m); end for k = N - m:-1:1 x1temprow = x1(k, :); x1temp = ones(N - m, 1)*x1temprow; dx1(k, :) = max(abs(x1temp - x1), [], 2)‘; Nkx1 = Nkx1 + (sum(dx1(k, :) < r) - 1)/(N - m - 1); x2temprow = x2(k, :); x2temp = ones(N - m, 1)*x2temprow; dx2(k, :) = max(abs(x2temp - x2), [], 2)‘; Nkx2 = Nkx2 + (sum(dx2(k, :) < r) - 1)/(N - m - 1); end Bmx1 = Nkx1/(N - m); Bmx2 = Nkx2/(N - m); SampEnVal = -log(Bmx2/Bmx1); end
标签:阈值 nes 向量 sam amp end for val function
原文地址:https://www.cnblogs.com/andrew-address/p/12725457.html