标签:because main expand osi class red **kwargs lse decide
Data wrangling:Join,Combine,and Reshape,in Pandas
import pandas as pd
import numpy as np
Hierarchical indexing
data=pd.Series(np.random.randn(9),index=[[‘a‘,‘a‘,‘a‘,‘b‘,‘b‘,‘c‘,‘c‘,‘d‘,‘d‘],[1,2,3,1,3,1,2,2,3]]);data
a 1 -0.396969
2 -0.348014
3 -1.340860
b 1 -0.502245
3 0.640700
c 1 0.063639
2 1.290096
d 2 -0.003899
3 0.541342
dtype: float64
data.index
MultiIndex(levels=[[‘a‘, ‘b‘, ‘c‘, ‘d‘], [1, 2, 3]],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])
In labels above,[0,0,0,1,1,2,2,3,3] represents the outer layer‘s label,0 represents ‘a‘,1 represents ‘b‘,2 represents ‘c‘, 3 represents ‘d‘.
[0,1,2,0,2,0,1,1,2] represents the inner layer‘s label,0 represents 1 in data‘s inner index, 1-->2,2-->3.
data[‘b‘]
1 -0.502245
3 0.640700
dtype: float64
data[‘b‘:‘c‘]
b 1 -0.502245
3 0.640700
c 1 0.063639
2 1.290096
dtype: float64
data.loc[[‘b‘,‘d‘]] # data[‘b‘,‘d‘] is wrong,because in this case,‘b‘ shall be index,‘d‘ shall be columns.
b 1 -0.502245
3 0.640700
d 2 -0.003899
3 0.541342
dtype: float64
data.loc[‘b‘,‘d‘]
---------------------------------------------------------------------------
IndexingError Traceback (most recent call last)
<ipython-input-8-f6a5fae3fedc> in <module>()
----> 1 data.loc[‘b‘,‘d‘]
D:\Anaconda\lib\site-packages\pandas\core\indexing.py in __getitem__(self, key)
1470 except (KeyError, IndexError):
1471 pass
-> 1472 return self._getitem_tuple(key)
1473 else:
1474 # we by definition only have the 0th axis
D:\Anaconda\lib\site-packages\pandas\core\indexing.py in _getitem_tuple(self, tup)
873
874 # no multi-index, so validate all of the indexers
--> 875 self._has_valid_tuple(tup)
876
877 # ugly hack for GH #836
D:\Anaconda\lib\site-packages\pandas\core\indexing.py in _has_valid_tuple(self, key)
218 for i, k in enumerate(key):
219 if i >= self.obj.ndim:
--> 220 raise IndexingError(‘Too many indexers‘)
221 try:
222 self._validate_key(k, i)
IndexingError: Too many indexers
data.loc[:,2]
a -0.348014
c 1.290096
d -0.003899
dtype: float64
data.unstack()
|
1 |
2 |
3 |
a |
-0.396969 |
-0.348014 |
-1.340860 |
b |
-0.502245 |
NaN |
0.640700 |
c |
0.063639 |
1.290096 |
NaN |
d |
NaN |
-0.003899 |
0.541342 |
data.unstack().stack()
a 1 -0.396969
2 -0.348014
3 -1.340860
b 1 -0.502245
3 0.640700
c 1 0.063639
2 1.290096
d 2 -0.003899
3 0.541342
dtype: float64
With a DataFrame,either axis can have a hierarchical index.
frame=pd.DataFrame(np.arange(12).reshape((4,3)),index=[[‘a‘,‘a‘,‘b‘,‘b‘],[1,2,1,2]],columns=[[‘Ohio‘,‘Ohio‘,‘Colorado‘],[‘Green‘,‘Red‘,‘Green‘]])
frame
|
|
Ohio |
Colorado |
|
|
Green |
Red |
Green |
a |
1 |
0 |
1 |
2 |
2 |
3 |
4 |
5 |
b |
1 |
6 |
7 |
8 |
2 |
9 |
10 |
11 |
frame.index.names=[‘Key1‘,‘Key2‘]
frame.columns.names=[‘state‘,‘color‘]
frame
|
state |
Ohio |
Colorado |
|
color |
Green |
Red |
Green |
Key1 |
Key2 |
|
|
|
a |
1 |
0 |
1 |
2 |
2 |
3 |
4 |
5 |
b |
1 |
6 |
7 |
8 |
2 |
9 |
10 |
11 |
frame[‘Ohio‘]
|
color |
Green |
Red |
Key1 |
Key2 |
|
|
a |
1 |
0 |
1 |
2 |
3 |
4 |
b |
1 |
6 |
7 |
2 |
9 |
10 |
frame[‘Ohio‘][‘Red‘]
Key1 Key2
a 1 1
2 4
b 1 7
2 10
Name: Red, dtype: int32
frame[(‘a‘,1):(‘b‘,1)]
|
state |
Ohio |
Colorado |
|
color |
Green |
Red |
Green |
Key1 |
Key2 |
|
|
|
a |
1 |
0 |
1 |
2 |
2 |
3 |
4 |
5 |
b |
1 |
6 |
7 |
8 |
frame[(‘a‘,1):(‘b‘,1)][‘Ohio‘]
|
color |
Green |
Red |
Key1 |
Key2 |
|
|
a |
1 |
0 |
1 |
2 |
3 |
4 |
b |
1 |
6 |
7 |
frame[(‘a‘,1):(‘b‘,1)][‘Ohio‘][‘Red‘]
Key1 Key2
a 1 1
2 4
b 1 7
Name: Red, dtype: int32
- Notice the level[] after another [] until to the specified column.
help(frame.loc)
Help on _LocIndexer in module pandas.core.indexing object:
class _LocIndexer(_LocationIndexer)
| Access a group of rows and columns by label(s) or a boolean array.
|
| ``.loc[]`` is primarily label based, but may also be used with a
| boolean array.
|
| Allowed inputs are:
|
| - A single label, e.g. ``5`` or ``‘a‘``, (note that ``5`` is
| interpreted as a *label* of the index, and **never** as an
| integer position along the index).
| - A list or array of labels, e.g. ``[‘a‘, ‘b‘, ‘c‘]``.
| - A slice object with labels, e.g. ``‘a‘:‘f‘``.
|
| .. warning:: Note that contrary to usual python slices, **both** the
| start and the stop are included
|
| - A boolean array of the same length as the axis being sliced,
| e.g. ``[True, False, True]``.
| - A ``callable`` function with one argument (the calling Series, DataFrame
| or Panel) and that returns valid output for indexing (one of the above)
|
| See more at :ref:`Selection by Label <indexing.label>`
|
| See Also
| --------
| DataFrame.at : Access a single value for a row/column label pair
| DataFrame.iloc : Access group of rows and columns by integer position(s)
| DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the
| Series/DataFrame.
| Series.loc : Access group of values using labels
|
| Examples
| --------
| **Getting values**
|
| >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
| ... index=[‘cobra‘, ‘viper‘, ‘sidewinder‘],
| ... columns=[‘max_speed‘, ‘shield‘])
| >>> df
| max_speed shield
| cobra 1 2
| viper 4 5
| sidewinder 7 8
|
| Single label. Note this returns the row as a Series.
|
| >>> df.loc[‘viper‘]
| max_speed 4
| shield 5
| Name: viper, dtype: int64
|
| List of labels. Note using ``[[]]`` returns a DataFrame.
|
| >>> df.loc[[‘viper‘, ‘sidewinder‘]]
| max_speed shield
| viper 4 5
| sidewinder 7 8
|
| Single label for row and column
|
| >>> df.loc[‘cobra‘, ‘shield‘]
| 2
|
| Slice with labels for row and single label for column. As mentioned
| above, note that both the start and stop of the slice are included.
|
| >>> df.loc[‘cobra‘:‘viper‘, ‘max_speed‘]
| cobra 1
| viper 4
| Name: max_speed, dtype: int64
|
| Boolean list with the same length as the row axis
|
| >>> df.loc[[False, False, True]]
| max_speed shield
| sidewinder 7 8
|
| Conditional that returns a boolean Series
|
| >>> df.loc[df[‘shield‘] > 6]
| max_speed shield
| sidewinder 7 8
|
| Conditional that returns a boolean Series with column labels specified
|
| >>> df.loc[df[‘shield‘] > 6, [‘max_speed‘]]
| max_speed
| sidewinder 7
|
| Callable that returns a boolean Series
|
| >>> df.loc[lambda df: df[‘shield‘] == 8]
| max_speed shield
| sidewinder 7 8
|
| **Setting values**
|
| Set value for all items matching the list of labels
|
| >>> df.loc[[‘viper‘, ‘sidewinder‘], [‘shield‘]] = 50
| >>> df
| max_speed shield
| cobra 1 2
| viper 4 50
| sidewinder 7 50
|
| Set value for an entire row
|
| >>> df.loc[‘cobra‘] = 10
| >>> df
| max_speed shield
| cobra 10 10
| viper 4 50
| sidewinder 7 50
|
| Set value for an entire column
|
| >>> df.loc[:, ‘max_speed‘] = 30
| >>> df
| max_speed shield
| cobra 30 10
| viper 30 50
| sidewinder 30 50
|
| Set value for rows matching callable condition
|
| >>> df.loc[df[‘shield‘] > 35] = 0
| >>> df
| max_speed shield
| cobra 30 10
| viper 0 0
| sidewinder 0 0
|
| **Getting values on a DataFrame with an index that has integer labels**
|
| Another example using integers for the index
|
| >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
| ... index=[7, 8, 9], columns=[‘max_speed‘, ‘shield‘])
| >>> df
| max_speed shield
| 7 1 2
| 8 4 5
| 9 7 8
|
| Slice with integer labels for rows. As mentioned above, note that both
| the start and stop of the slice are included.
|
| >>> df.loc[7:9]
| max_speed shield
| 7 1 2
| 8 4 5
| 9 7 8
|
| **Getting values with a MultiIndex**
|
| A number of examples using a DataFrame with a MultiIndex
|
| >>> tuples = [
| ... (‘cobra‘, ‘mark i‘), (‘cobra‘, ‘mark ii‘),
| ... (‘sidewinder‘, ‘mark i‘), (‘sidewinder‘, ‘mark ii‘),
| ... (‘viper‘, ‘mark ii‘), (‘viper‘, ‘mark iii‘)
| ... ]
| >>> index = pd.MultiIndex.from_tuples(tuples)
| >>> values = [[12, 2], [0, 4], [10, 20],
| ... [1, 4], [7, 1], [16, 36]]
| >>> df = pd.DataFrame(values, columns=[‘max_speed‘, ‘shield‘], index=index)
| >>> df
| max_speed shield
| cobra mark i 12 2
| mark ii 0 4
| sidewinder mark i 10 20
| mark ii 1 4
| viper mark ii 7 1
| mark iii 16 36
|
| Single label. Note this returns a DataFrame with a single index.
|
| >>> df.loc[‘cobra‘]
| max_speed shield
| mark i 12 2
| mark ii 0 4
|
| Single index tuple. Note this returns a Series.
|
| >>> df.loc[(‘cobra‘, ‘mark ii‘)]
| max_speed 0
| shield 4
| Name: (cobra, mark ii), dtype: int64
|
| Single label for row and column. Similar to passing in a tuple, this
| returns a Series.
|
| >>> df.loc[‘cobra‘, ‘mark i‘]
| max_speed 12
| shield 2
| Name: (cobra, mark i), dtype: int64
|
| Single tuple. Note using ``[[]]`` returns a DataFrame.
|
| >>> df.loc[[(‘cobra‘, ‘mark ii‘)]]
| max_speed shield
| cobra mark ii 0 4
|
| Single tuple for the index with a single label for the column
|
| >>> df.loc[(‘cobra‘, ‘mark i‘), ‘shield‘]
| 2
|
| Slice from index tuple to single label
|
| >>> df.loc[(‘cobra‘, ‘mark i‘):‘viper‘]
| max_speed shield
| cobra mark i 12 2
| mark ii 0 4
| sidewinder mark i 10 20
| mark ii 1 4
| viper mark ii 7 1
| mark iii 16 36
|
| Slice from index tuple to index tuple
|
| >>> df.loc[(‘cobra‘, ‘mark i‘):(‘viper‘, ‘mark ii‘)]
| max_speed shield
| cobra mark i 12 2
| mark ii 0 4
| sidewinder mark i 10 20
| mark ii 1 4
| viper mark ii 7 1
|
| Raises
| ------
| KeyError:
| when any items are not found
|
| Method resolution order:
| _LocIndexer
| _LocationIndexer
| _NDFrameIndexer
| pandas._libs.indexing._NDFrameIndexerBase
| builtins.object
|
| Methods inherited from _LocationIndexer:
|
| __getitem__(self, key)
|
| ----------------------------------------------------------------------
| Methods inherited from _NDFrameIndexer:
|
| __call__(self, axis=None)
| Call self as a function.
|
| __iter__(self)
|
| __setitem__(self, key, value)
|
| ----------------------------------------------------------------------
| Data descriptors inherited from _NDFrameIndexer:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| ----------------------------------------------------------------------
| Data and other attributes inherited from _NDFrameIndexer:
|
| axis = None
|
| ----------------------------------------------------------------------
| Methods inherited from pandas._libs.indexing._NDFrameIndexerBase:
|
| __init__(self, /, *args, **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| __reduce__ = __reduce_cython__(...)
|
| __setstate__ = __setstate_cython__(...)
|
| ----------------------------------------------------------------------
| Static methods inherited from pandas._libs.indexing._NDFrameIndexerBase:
|
| __new__(*args, **kwargs) from builtins.type
| Create and return a new object. See help(type) for accurate signature.
|
| ----------------------------------------------------------------------
| Data descriptors inherited from pandas._libs.indexing._NDFrameIndexerBase:
|
| name
|
| ndim
|
| obj
pd.MultiIndex.from_arrays([[‘Ohio‘,‘Ohio‘,‘Colorado‘],[‘Green‘,‘Red‘,‘Green‘]],names=[‘state‘,‘color‘])
MultiIndex(levels=[[‘Colorado‘, ‘Ohio‘], [‘Green‘, ‘Red‘]],
labels=[[1, 1, 0], [0, 1, 0]],
names=[‘state‘, ‘color‘])
Reodering and Sorting levels
help(frame.swaplevel)
Help on method swaplevel in module pandas.core.frame:
swaplevel(i=-2, j=-1, axis=0) method of pandas.core.frame.DataFrame instance
Swap levels i and j in a MultiIndex on a particular axis
Parameters
----------
i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.
Returns
-------
swapped : type of caller (new object)
.. versionchanged:: 0.18.1
The indexes ``i`` and ``j`` are now optional, and default to
the two innermost levels of the index.
frame.swaplevel(‘Key1‘,‘Key2‘)
|
state |
Ohio |
Colorado |
|
color |
Green |
Red |
Green |
Key2 |
Key1 |
|
|
|
1 |
a |
0 |
1 |
2 |
2 |
a |
3 |
4 |
5 |
1 |
b |
6 |
7 |
8 |
2 |
b |
9 |
10 |
11 |
help(frame.sort_index)
Help on method sort_index in module pandas.core.frame:
sort_index(axis=0, level=None, ascending=True, inplace=False, kind=‘quicksort‘, na_position=‘last‘, sort_remaining=True, by=None) method of pandas.core.frame.DataFrame instance
Sort object by labels (along an axis)
Parameters
----------
axis : index, columns to direct sorting
level : int or level name or list of ints or list of level names
if not None, sort on values in specified index level(s)
ascending : boolean, default True
Sort ascending vs. descending
inplace : bool, default False
if True, perform operation in-place
kind : {‘quicksort‘, ‘mergesort‘, ‘heapsort‘}, default ‘quicksort‘
Choice of sorting algorithm. See also ndarray.np.sort for more
information. `mergesort` is the only stable algorithm. For
DataFrames, this option is only applied when sorting on a single
column or label.
na_position : {‘first‘, ‘last‘}, default ‘last‘
`first` puts NaNs at the beginning, `last` puts NaNs at the end.
Not implemented for MultiIndex.
sort_remaining : bool, default True
if true and sorting by level and index is multilevel, sort by other
levels too (in order) after sorting by specified level
Returns
-------
sorted_obj : DataFrame
frame.sort_index(level=0)
|
state |
Ohio |
Colorado |
|
color |
Green |
Red |
Green |
Key1 |
Key2 |
|
|
|
a |
1 |
0 |
1 |
2 |
2 |
3 |
4 |
5 |
b |
1 |
6 |
7 |
8 |
2 |
9 |
10 |
11 |
frame.sort_index(level=1)
|
state |
Ohio |
Colorado |
|
color |
Green |
Red |
Green |
Key1 |
Key2 |
|
|
|
a |
1 |
0 |
1 |
2 |
b |
1 |
6 |
7 |
8 |
a |
2 |
3 |
4 |
5 |
b |
2 |
9 |
10 |
11 |
frame.sort_index(level=‘Key2‘)
|
state |
Ohio |
Colorado |
|
color |
Green |
Red |
Green |
Key1 |
Key2 |
|
|
|
a |
1 |
0 |
1 |
2 |
b |
1 |
6 |
7 |
8 |
a |
2 |
3 |
4 |
5 |
b |
2 |
9 |
10 |
11 |
frame.swaplevel(0,1).sort_index(level=0 )
|
state |
Ohio |
Colorado |
|
color |
Green |
Red |
Green |
Key2 |
Key1 |
|
|
|
1 |
a |
0 |
1 |
2 |
b |
6 |
7 |
8 |
2 |
a |
3 |
4 |
5 |
b |
9 |
10 |
11 |
Summary statistics by level
frame
|
state |
Ohio |
Colorado |
|
color |
Green |
Red |
Green |
Key1 |
Key2 |
|
|
|
a |
1 |
0 |
1 |
2 |
2 |
3 |
4 |
5 |
b |
1 |
6 |
7 |
8 |
2 |
9 |
10 |
11 |
frame.sum(level=‘Key2‘)
state |
Ohio |
Colorado |
color |
Green |
Red |
Green |
Key2 |
|
|
|
1 |
6 |
8 |
10 |
2 |
12 |
14 |
16 |
frame.sum(level=‘Key1‘)
state |
Ohio |
Colorado |
color |
Green |
Red |
Green |
Key1 |
|
|
|
a |
3 |
5 |
7 |
b |
15 |
17 |
19 |
frame.sum(level=‘color‘,axis=1)
|
color |
Green |
Red |
Key1 |
Key2 |
|
|
a |
1 |
2 |
1 |
2 |
8 |
4 |
b |
1 |
14 |
7 |
2 |
20 |
10 |
Indexing with a DataFrame‘s columns
frame=pd.DataFrame({‘a‘:range(7),‘b‘:range(7,0,-1),‘c‘:[‘one‘,‘one‘,‘one‘,‘two‘,‘two‘,‘two‘,‘two‘],‘d‘:[0,1,2,0,1,2,3]})
frame
|
a |
b |
c |
d |
0 |
0 |
7 |
one |
0 |
1 |
1 |
6 |
one |
1 |
2 |
2 |
5 |
one |
2 |
3 |
3 |
4 |
two |
0 |
4 |
4 |
3 |
two |
1 |
5 |
5 |
2 |
two |
2 |
6 |
6 |
1 |
two |
3 |
frame2=frame.set_index([‘c‘,‘d‘]);frame2
|
|
a |
b |
c |
d |
|
|
one |
0 |
0 |
7 |
1 |
1 |
6 |
2 |
2 |
5 |
two |
0 |
3 |
4 |
1 |
4 |
3 |
2 |
5 |
2 |
3 |
6 |
1 |
- By default,the columns are removed from the DataFrame,though you can leave them in:
frame.set_index([‘c‘,‘d‘],drop=False)
|
|
a |
b |
c |
d |
c |
d |
|
|
|
|
one |
0 |
0 |
7 |
one |
0 |
1 |
1 |
6 |
one |
1 |
2 |
2 |
5 |
one |
2 |
two |
0 |
3 |
4 |
two |
0 |
1 |
4 |
3 |
two |
1 |
2 |
5 |
2 |
two |
2 |
3 |
6 |
1 |
two |
3 |
reset_index
does the opposite of set_index
.
frame2.reset_index()
|
c |
d |
a |
b |
0 |
one |
0 |
0 |
7 |
1 |
one |
1 |
1 |
6 |
2 |
one |
2 |
2 |
5 |
3 |
two |
0 |
3 |
4 |
4 |
two |
1 |
4 |
3 |
5 |
two |
2 |
5 |
2 |
6 |
two |
3 |
6 |
1 |
Combining and merging datasets
Database-style DataFrame joins
help(pd.merge)
Help on function merge in module pandas.core.reshape.merge:
merge(left, right, how=‘inner‘, on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=(‘_x‘, ‘_y‘), copy=True, indicator=False, validate=None)
Merge DataFrame objects by performing a database-style join operation by
columns or indexes.
If joining columns on columns, the DataFrame indexes *will be
ignored*. Otherwise if joining indexes on indexes or indexes on a column or
columns, the index will be passed on.
Parameters
----------
left : DataFrame
right : DataFrame
how : {‘left‘, ‘right‘, ‘outer‘, ‘inner‘}, default ‘inner‘
* left: use only keys from left frame, similar to a SQL left outer join;
preserve key order
* right: use only keys from right frame, similar to a SQL right outer join;
preserve key order
* outer: use union of keys from both frames, similar to a SQL full outer
join; sort keys lexicographically
* inner: use intersection of keys from both frames, similar to a SQL inner
join; preserve the order of the left keys
on : label or list
Column or index level names to join on. These must be found in both
DataFrames. If `on` is None and not merging on indexes then this defaults
to the intersection of the columns in both DataFrames.
left_on : label or list, or array-like
Column or index level names to join on in the left DataFrame. Can also
be an array or list of arrays of the length of the left DataFrame.
These arrays are treated as if they are columns.
right_on : label or list, or array-like
Column or index level names to join on in the right DataFrame. Can also
be an array or list of arrays of the length of the right DataFrame.
These arrays are treated as if they are columns.
left_index : boolean, default False
Use the index from the left DataFrame as the join key(s). If it is a
MultiIndex, the number of keys in the other DataFrame (either the index
or a number of columns) must match the number of levels
right_index : boolean, default False
Use the index from the right DataFrame as the join key. Same caveats as
left_index
sort : boolean, default False
Sort the join keys lexicographically in the result DataFrame. If False,
the order of the join keys depends on the join type (how keyword)
suffixes : 2-length sequence (tuple, list, ...)
Suffix to apply to overlapping column names in the left and right
side, respectively
copy : boolean, default True
If False, do not copy data unnecessarily
indicator : boolean or string, default False
If True, adds a column to output DataFrame called "_merge" with
information on the source of each row.
If string, column with information on source of each row will be added to
output DataFrame, and column will be named value of string.
Information column is Categorical-type and takes on a value of "left_only"
for observations whose merge key only appears in ‘left‘ DataFrame,
"right_only" for observations whose merge key only appears in ‘right‘
DataFrame, and "both" if the observation‘s merge key is found in both.
validate : string, default None
If specified, checks if merge is of specified type.
* "one_to_one" or "1:1": check if merge keys are unique in both
left and right datasets.
* "one_to_many" or "1:m": check if merge keys are unique in left
dataset.
* "many_to_one" or "m:1": check if merge keys are unique in right
dataset.
* "many_to_many" or "m:m": allowed, but does not result in checks.
.. versionadded:: 0.21.0
Notes
-----
Support for specifying index levels as the `on`, `left_on`, and
`right_on` parameters was added in version 0.23.0
Examples
--------
>>> A >>> B
lkey value rkey value
0 foo 1 0 foo 5
1 bar 2 1 bar 6
2 baz 3 2 qux 7
3 foo 4 3 bar 8
>>> A.merge(B, left_on=‘lkey‘, right_on=‘rkey‘, how=‘outer‘)
lkey value_x rkey value_y
0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7
Returns
-------
merged : DataFrame
The output type will the be same as ‘left‘, if it is a subclass
of DataFrame.
See also
--------
merge_ordered
merge_asof
DataFrame.join
df1=pd.DataFrame({‘key‘:[‘b‘,‘b‘,‘a‘,‘c‘,‘a‘,‘a‘,‘b‘],‘data1‘:range(7)});df1
|
key |
data1 |
0 |
b |
0 |
1 |
b |
1 |
2 |
a |
2 |
3 |
c |
3 |
4 |
a |
4 |
5 |
a |
5 |
6 |
b |
6 |
df2=pd.DataFrame({‘key‘:[‘a‘,‘b‘,‘d‘],‘data2‘:range(3)});df2
|
key |
data2 |
0 |
a |
0 |
1 |
b |
1 |
2 |
d |
2 |
pd.merge(df1,df2)
|
key |
data1 |
data2 |
0 |
b |
0 |
1 |
1 |
b |
1 |
1 |
2 |
b |
6 |
1 |
3 |
a |
2 |
0 |
4 |
a |
4 |
0 |
5 |
a |
5 |
0 |
- By default,
how
is ‘inner‘,meaning result is intersection. It‘s a good pratice to specify explicitly which column to join on using on
.
pd.merge(df1,df2,on=‘key‘)
|
key |
data1 |
data2 |
0 |
b |
0 |
1 |
1 |
b |
1 |
1 |
2 |
b |
6 |
1 |
3 |
a |
2 |
0 |
4 |
a |
4 |
0 |
5 |
a |
5 |
0 |
- If the column names are different in each object,you can specify them separately.
df3=pd.DataFrame({‘lkey‘:[‘b‘,‘b‘,‘a‘,‘c‘,‘a‘,‘a‘,‘b‘],‘data1‘:range(7)});df3
|
lkey |
data1 |
0 |
b |
0 |
1 |
b |
1 |
2 |
a |
2 |
3 |
c |
3 |
4 |
a |
4 |
5 |
a |
5 |
6 |
b |
6 |
df4=pd.DataFrame({‘rkey‘:[‘a‘,‘b‘,‘d‘],‘data2‘:range(3)});df4
|
rkey |
data2 |
0 |
a |
0 |
1 |
b |
1 |
2 |
d |
2 |
pd.merge(df3,df4,left_on=‘lkey‘,right_on=‘rkey‘)
|
lkey |
data1 |
rkey |
data2 |
0 |
b |
0 |
b |
1 |
1 |
b |
1 |
b |
1 |
2 |
b |
6 |
b |
1 |
3 |
a |
2 |
a |
0 |
4 |
a |
4 |
a |
0 |
5 |
a |
5 |
a |
0 |
pd.merge(df3,df4,left_on=‘lkey‘,right_on=‘rkey‘,how=‘outer‘)
|
lkey |
data1 |
rkey |
data2 |
0 |
b |
0.0 |
b |
1.0 |
1 |
b |
1.0 |
b |
1.0 |
2 |
b |
6.0 |
b |
1.0 |
3 |
a |
2.0 |
a |
0.0 |
4 |
a |
4.0 |
a |
0.0 |
5 |
a |
5.0 |
a |
0.0 |
6 |
c |
3.0 |
NaN |
NaN |
7 |
NaN |
NaN |
d |
2.0 |
pd.merge(df3,df4,left_on=‘lkey‘,right_on=‘rkey‘,how=‘left‘)
|
lkey |
data1 |
rkey |
data2 |
0 |
b |
0 |
b |
1.0 |
1 |
b |
1 |
b |
1.0 |
2 |
a |
2 |
a |
0.0 |
3 |
c |
3 |
NaN |
NaN |
4 |
a |
4 |
a |
0.0 |
5 |
a |
5 |
a |
0.0 |
6 |
b |
6 |
b |
1.0 |
pd.merge(df3,df4,left_on=‘lkey‘,right_on=‘rkey‘,how=‘right‘)
|
lkey |
data1 |
rkey |
data2 |
0 |
b |
0.0 |
b |
1 |
1 |
b |
1.0 |
b |
1 |
2 |
b |
6.0 |
b |
1 |
3 |
a |
2.0 |
a |
0 |
4 |
a |
4.0 |
a |
0 |
5 |
a |
5.0 |
a |
0 |
6 |
NaN |
NaN |
d |
2 |
- Above, the many-to-one case has been demonstrated,and that means in pd.merge(df3,df4),values in column ‘key‘ of df4 are all unique.Now,in terms of many-to-many,which means values in column ‘key‘ of df4 are not unique,it forms the Cartesian product of rows.
df1=pd.DataFrame({‘key‘:[‘b‘,‘b‘,‘a‘,‘c‘,‘a‘,‘b‘],‘data1‘:range(6)});df1
|
key |
data1 |
0 |
b |
0 |
1 |
b |
1 |
2 |
a |
2 |
3 |
c |
3 |
4 |
a |
4 |
5 |
b |
5 |
df2=pd.DataFrame({‘key‘:[‘a‘,‘b‘,‘a‘,‘b‘,‘d‘],‘data2‘:range(5)});df2
|
key |
data2 |
0 |
a |
0 |
1 |
b |
1 |
2 |
a |
2 |
3 |
b |
3 |
4 |
d |
4 |
pd.merge(df1,df2,on=‘key‘,how=‘left‘)
|
key |
data1 |
data2 |
0 |
b |
0 |
1.0 |
1 |
b |
0 |
3.0 |
2 |
b |
1 |
1.0 |
3 |
b |
1 |
3.0 |
4 |
a |
2 |
0.0 |
5 |
a |
2 |
2.0 |
6 |
c |
3 |
NaN |
7 |
a |
4 |
0.0 |
8 |
a |
4 |
2.0 |
9 |
b |
5 |
1.0 |
10 |
b |
5 |
3.0 |
pd.merge(df1,df2,how=‘inner‘)
|
key |
data1 |
data2 |
0 |
b |
0 |
1 |
1 |
b |
0 |
3 |
2 |
b |
1 |
1 |
3 |
b |
1 |
3 |
4 |
b |
5 |
1 |
5 |
b |
5 |
3 |
6 |
a |
2 |
0 |
7 |
a |
2 |
2 |
8 |
a |
4 |
0 |
9 |
a |
4 |
2 |
- To merge with multiple keys,pass a list of column names.
left=pd.DataFrame({‘key1‘:[‘foo‘,‘foo‘,‘bar‘],
‘key2‘:[‘one‘,‘two‘,‘one‘],
‘lval‘:[1,2,3]});left
|
key1 |
key2 |
lval |
0 |
foo |
one |
1 |
1 |
foo |
two |
2 |
2 |
bar |
one |
3 |
right=pd.DataFrame({‘key1‘:[‘foo‘,‘foo‘,‘bar‘,‘bar‘],
‘key2‘:[‘one‘,‘one‘,‘one‘,‘one‘],
‘rval‘:[4,5,6,7]});right
|
key1 |
key2 |
rval |
0 |
foo |
one |
4 |
1 |
foo |
one |
5 |
2 |
bar |
one |
6 |
3 |
bar |
one |
7 |
pd.merge(left,right,on=[‘key1‘,‘key2‘],how=‘outer‘)
|
key1 |
key2 |
lval |
rval |
0 |
foo |
one |
1 |
4.0 |
1 |
foo |
one |
1 |
5.0 |
2 |
foo |
two |
2 |
NaN |
3 |
bar |
one |
3 |
6.0 |
4 |
bar |
one |
3 |
7.0 |
- A last issue to consider in merge operations is the treatment of overlapping column names;
merge
has a suffixes
option for specifying strings to append to overlapping names in the left and right DataFrame objects.
pd.merge(left,right,on=‘key1‘)
|
key1 |
key2_x |
lval |
key2_y |
rval |
0 |
foo |
one |
1 |
one |
4 |
1 |
foo |
one |
1 |
one |
5 |
2 |
foo |
two |
2 |
one |
4 |
3 |
foo |
two |
2 |
one |
5 |
4 |
bar |
one |
3 |
one |
6 |
5 |
bar |
one |
3 |
one |
7 |
pd.merge(left,right,on=‘key1‘,suffixes=(‘_left‘,‘_right‘))
|
key1 |
key2_left |
lval |
key2_right |
rval |
0 |
foo |
one |
1 |
one |
4 |
1 |
foo |
one |
1 |
one |
5 |
2 |
foo |
two |
2 |
one |
4 |
3 |
foo |
two |
2 |
one |
5 |
4 |
bar |
one |
3 |
one |
6 |
5 |
bar |
one |
3 |
one |
7 |
Merging on Index
In some cases, the merge key(s) in a DataFrame will be found in its index. In this case,you can pass left_index=True
or right_index=True
(or both) to indicate that the index should be used as the merge key.
left1=pd.DataFrame({‘key‘:[‘a‘,‘b‘,‘a‘,‘a‘,‘b‘,‘c‘],‘value‘:range(6)});left1
|
key |
value |
0 |
a |
0 |
1 |
b |
1 |
2 |
a |
2 |
3 |
a |
3 |
4 |
b |
4 |
5 |
c |
5 |
right1=pd.DataFrame({‘group_val‘:[3.5,7]},index=[‘a‘,‘b‘]);right1
pd.merge(left1,right1,left_on=‘key‘,right_index=True)
|
key |
value |
group_val |
0 |
a |
0 |
3.5 |
2 |
a |
2 |
3.5 |
3 |
a |
3 |
3.5 |
1 |
b |
1 |
7.0 |
4 |
b |
4 |
7.0 |
pd.merge(left1,right1,left_on=‘key‘,right_index=True,how=‘outer‘)
|
key |
value |
group_val |
0 |
a |
0 |
3.5 |
2 |
a |
2 |
3.5 |
3 |
a |
3 |
3.5 |
1 |
b |
1 |
7.0 |
4 |
b |
4 |
7.0 |
5 |
c |
5 |
NaN |
With hierachically indexed data,things are more complicated,as joining on index is implicitly a multiple-key merge:
lefth=pd.DataFrame({‘key1‘:[‘Ohio‘,‘Ohio‘,‘Ohio‘,‘Nevada‘,‘Devada‘],
‘key2‘:[2000,2001,2002,2001,2002],
‘data‘:np.arange(5)});lefth
|
key1 |
key2 |
data |
0 |
Ohio |
2000 |
0 |
1 |
Ohio |
2001 |
1 |
2 |
Ohio |
2002 |
2 |
3 |
Nevada |
2001 |
3 |
4 |
Devada |
2002 |
4 |
righth=pd.DataFrame(np.arange(12).reshape((6,2)),index=[[‘Nevada‘,‘Nevada‘,‘Ohio‘,‘Ohio‘,‘Ohio‘,‘Ohio‘],
[2001,2000,2000,2000,2001,2002]],
columns=[‘event1‘,‘event2‘]);righth
|
|
event1 |
event2 |
Nevada |
2001 |
0 |
1 |
2000 |
2 |
3 |
Ohio |
2000 |
4 |
5 |
2000 |
6 |
7 |
2001 |
8 |
9 |
2002 |
10 |
11 |
pd.merge(lefth,righth,left_on=[‘key1‘,‘key2‘],right_index=True)
|
key1 |
key2 |
data |
event1 |
event2 |
0 |
Ohio |
2000 |
0 |
4 |
5 |
0 |
Ohio |
2000 |
0 |
6 |
7 |
1 |
Ohio |
2001 |
1 |
8 |
9 |
2 |
Ohio |
2002 |
2 |
10 |
11 |
3 |
Nevada |
2001 |
3 |
0 |
1 |
pd.merge(lefth,righth,left_on=[‘key1‘,‘key2‘],right_index=True,how=‘outer‘)
|
key1 |
key2 |
data |
event1 |
event2 |
0 |
Ohio |
2000 |
0.0 |
4.0 |
5.0 |
0 |
Ohio |
2000 |
0.0 |
6.0 |
7.0 |
1 |
Ohio |
2001 |
1.0 |
8.0 |
9.0 |
2 |
Ohio |
2002 |
2.0 |
10.0 |
11.0 |
3 |
Nevada |
2001 |
3.0 |
0.0 |
1.0 |
4 |
Devada |
2002 |
4.0 |
NaN |
NaN |
4 |
Nevada |
2000 |
NaN |
2.0 |
3.0 |
- Using the indexes of both sides of the merge is also possible.
left2=pd.DataFrame([[1,2],[3,4],[5,6]],
index=[‘a‘,‘b‘,‘c‘],
columns=[‘Ohio‘,‘Nevada‘]);left2
|
Ohio |
Nevada |
a |
1 |
2 |
b |
3 |
4 |
c |
5 |
6 |
right2=pd.DataFrame([[7,8],[9,10],[11,12],[13,14]],
index=[‘b‘,‘c‘,‘d‘,‘e‘],
columns=[‘Missori‘,‘Alabama‘]);right2
|
Missori |
Alabama |
b |
7 |
8 |
c |
9 |
10 |
d |
11 |
12 |
e |
13 |
14 |
pd.merge(left2,right2,how=‘outer‘,left_index=True,right_index=True)
|
Ohio |
Nevada |
Missori |
Alabama |
a |
1.0 |
2.0 |
NaN |
NaN |
b |
3.0 |
4.0 |
7.0 |
8.0 |
c |
5.0 |
6.0 |
9.0 |
10.0 |
d |
NaN |
NaN |
11.0 |
12.0 |
e |
NaN |
NaN |
13.0 |
14.0 |
- DataFrame has a convenient
join
instance for merging by index.It can also be used to combine together many DataFrame objects having the same or similiar indexes but non-overlapping columns.
left2.join(right2,how=‘outer‘)
|
Ohio |
Nevada |
Missori |
Alabama |
a |
1.0 |
2.0 |
NaN |
NaN |
b |
3.0 |
4.0 |
7.0 |
8.0 |
c |
5.0 |
6.0 |
9.0 |
10.0 |
d |
NaN |
NaN |
11.0 |
12.0 |
e |
NaN |
NaN |
13.0 |
14.0 |
left1
|
key |
value |
0 |
a |
0 |
1 |
b |
1 |
2 |
a |
2 |
3 |
a |
3 |
4 |
b |
4 |
5 |
c |
5 |
right1
left1.join(right1,on=‘key‘)
|
key |
value |
group_val |
0 |
a |
0 |
3.5 |
1 |
b |
1 |
7.0 |
2 |
a |
2 |
3.5 |
3 |
a |
3 |
3.5 |
4 |
b |
4 |
7.0 |
5 |
c |
5 |
NaN |
another=pd.DataFrame([[7,8],[9,10],[11,12],[16,17]],index=[‘a‘,‘c‘,‘e‘,‘f‘],columns=[‘New York‘,‘Oregon‘]);another
|
New York |
Oregon |
a |
7 |
8 |
c |
9 |
10 |
e |
11 |
12 |
f |
16 |
17 |
left2
|
Ohio |
Nevada |
a |
1 |
2 |
b |
3 |
4 |
c |
5 |
6 |
right2
|
Missori |
Alabama |
b |
7 |
8 |
c |
9 |
10 |
d |
11 |
12 |
e |
13 |
14 |
left2.join([right2,another])
|
Ohio |
Nevada |
Missori |
Alabama |
New York |
Oregon |
a |
1 |
2 |
NaN |
NaN |
7.0 |
8.0 |
b |
3 |
4 |
7.0 |
8.0 |
NaN |
NaN |
c |
5 |
6 |
9.0 |
10.0 |
9.0 |
10.0 |
left2.join([right2,another],how=‘outer‘)
D:\Anaconda\lib\site-packages\pandas\core\frame.py:6369: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.
To accept the future behavior, pass ‘sort=False‘.
To retain the current behavior and silence the warning, pass ‘sort=True‘.
verify_integrity=True)
|
Ohio |
Nevada |
Missori |
Alabama |
New York |
Oregon |
a |
1.0 |
2.0 |
NaN |
NaN |
7.0 |
8.0 |
b |
3.0 |
4.0 |
7.0 |
8.0 |
NaN |
NaN |
c |
5.0 |
6.0 |
9.0 |
10.0 |
9.0 |
10.0 |
d |
NaN |
NaN |
11.0 |
12.0 |
NaN |
NaN |
e |
NaN |
NaN |
13.0 |
14.0 |
11.0 |
12.0 |
f |
NaN |
NaN |
NaN |
NaN |
16.0 |
17.0 |
Concatenating along an axis
Another kind of data combination operation is referred to interchangebly as concatenation,binding or stacking.Numpy‘s concatenate
can do this with Numpy arrays.
arr=np.arange(12).reshape((3,4));arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
np.concatenate([arr,arr],axis=1)
array([[ 0, 1, 2, 3, 0, 1, 2, 3],
[ 4, 5, 6, 7, 4, 5, 6, 7],
[ 8, 9, 10, 11, 8, 9, 10, 11]])
np.concatenate([arr,arr],axis=0)
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
s1=pd.Series([0,1],index=[‘a‘,‘b‘]);s1
a 0
b 1
dtype: int64
s2=pd.Series([2,3,4],index=[‘c‘,‘d‘,‘e‘]);s2
c 2
d 3
e 4
dtype: int64
s3=pd.Series([5,6],index=[‘f‘,‘g‘])
pd.concat([s1,s2,s3])
a 0
b 1
c 2
d 3
e 4
f 5
g 6
dtype: int64
- By default,
concat
works along axis=0,producing another Series.If you pass axis=1
,the result will instead be a DataFrame(axis=1 is the column)
pd.concat([s1,s2,s3],axis=1)
D:\Anaconda\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.
To accept the future behavior, pass ‘sort=False‘.
To retain the current behavior and silence the warning, pass ‘sort=True‘.
"""Entry point for launching an IPython kernel.
|
0 |
1 |
2 |
a |
0.0 |
NaN |
NaN |
b |
1.0 |
NaN |
NaN |
c |
NaN |
2.0 |
NaN |
d |
NaN |
3.0 |
NaN |
e |
NaN |
4.0 |
NaN |
f |
NaN |
NaN |
5.0 |
g |
NaN |
NaN |
6.0 |
s4=pd.concat([s1,s2]);s4
a 0
b 1
c 2
d 3
e 4
dtype: int64
s1
a 0
b 1
dtype: int64
pd.concat([s1,s4])
a 0
b 1
a 0
b 1
c 2
d 3
e 4
dtype: int64
pd.concat([s1,s4],axis=1)
D:\Anaconda\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.
To accept the future behavior, pass ‘sort=False‘.
To retain the current behavior and silence the warning, pass ‘sort=True‘.
"""Entry point for launching an IPython kernel.
|
0 |
1 |
a |
0.0 |
0 |
b |
1.0 |
1 |
c |
NaN |
2 |
d |
NaN |
3 |
e |
NaN |
4 |
join
:either ‘inner‘ or ‘outer‘(default);whether to intersection(inner) or union(outer) together indexes along the other axis.
pd.concat([s1,s4],axis=1,join=‘inner‘)
join_axes
: Specific indexes to use for the other n-1 axes insteda of performing union/intersection loggic
pd.concat([s1,s2],axis=1,join_axes=[[‘a‘,‘c‘,‘b‘,‘e‘]])
|
0 |
1 |
a |
0.0 |
NaN |
c |
NaN |
2.0 |
b |
1.0 |
NaN |
e |
NaN |
4.0 |
keys
:values to associate with objects being concatenated,forming a hierarchical index along the concatenation axis;can either be a list or array of arbitrary values,an array of tuples,or a list of arrays(if multiple-level arrays passed in levels)
result=pd.concat([s1,s1,s3],keys=[‘one‘,‘two‘,‘three‘]);result
one a 0
b 1
two a 0
b 1
three f 5
g 6
dtype: int64
result.unstack()
|
a |
b |
f |
g |
one |
0.0 |
1.0 |
NaN |
NaN |
two |
0.0 |
1.0 |
NaN |
NaN |
three |
NaN |
NaN |
5.0 |
6.0 |
In the case of combining Series along axis=1,the keys become the DataFrame columns headers.
pd.concat([s1,s2,s3],axis=1,keys=[‘one‘,‘two‘,‘three‘])
D:\Anaconda\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.
To accept the future behavior, pass ‘sort=False‘.
To retain the current behavior and silence the warning, pass ‘sort=True‘.
"""Entry point for launching an IPython kernel.
|
one |
two |
three |
a |
0.0 |
NaN |
NaN |
b |
1.0 |
NaN |
NaN |
c |
NaN |
2.0 |
NaN |
d |
NaN |
3.0 |
NaN |
e |
NaN |
4.0 |
NaN |
f |
NaN |
NaN |
5.0 |
g |
NaN |
NaN |
6.0 |
- The same logix extends to DataFrame objects:
df1=pd.DataFrame(np.arange(6).reshape((3,2)),index=[‘a‘,‘b‘,‘c‘],columns=[‘one‘,‘two‘]);df1
|
one |
two |
a |
0 |
1 |
b |
2 |
3 |
c |
4 |
5 |
df2=pd.DataFrame(5+np.arange(4).reshape((2,2)),index=[‘a‘,‘c‘],columns=[‘three‘,‘four‘]);df2
pd.concat([df1,df2],axis=1,keys=[‘level1‘,‘level2‘],sort=True)
|
level1 |
level2 |
|
one |
two |
three |
four |
a |
0 |
1 |
5.0 |
6.0 |
b |
2 |
3 |
NaN |
NaN |
c |
4 |
5 |
7.0 |
8.0 |
pd.concat([df1,df2],sort=False)
|
one |
two |
three |
four |
a |
0.0 |
1.0 |
NaN |
NaN |
b |
2.0 |
3.0 |
NaN |
NaN |
c |
4.0 |
5.0 |
NaN |
NaN |
a |
NaN |
NaN |
5.0 |
6.0 |
c |
NaN |
NaN |
7.0 |
8.0 |
pd.concat([df1,df2],sort=True)
|
four |
one |
three |
two |
a |
NaN |
0.0 |
NaN |
1.0 |
b |
NaN |
2.0 |
NaN |
3.0 |
c |
NaN |
4.0 |
NaN |
5.0 |
a |
6.0 |
NaN |
5.0 |
NaN |
c |
8.0 |
NaN |
7.0 |
NaN |
- If you pass a dict of objects instead of a list,the dict‘s keys will be used for the keys option.
pd.concat({‘level1‘:df1,‘level2‘:df2},axis=1,sort=False)
|
level1 |
level2 |
|
one |
two |
three |
four |
a |
0 |
1 |
5.0 |
6.0 |
b |
2 |
3 |
NaN |
NaN |
c |
4 |
5 |
7.0 |
8.0 |
- We can name the created axis levels with the
names
argument.names
: Names for created hierarchical levels if keys and//or levels passed.
pd.concat([df1,df2],keys=[‘level1‘,‘level2‘],names=[‘upper‘,‘lower‘],sort=False)
|
|
one |
two |
three |
four |
upper |
lower |
|
|
|
|
level1 |
a |
0.0 |
1.0 |
NaN |
NaN |
b |
2.0 |
3.0 |
NaN |
NaN |
c |
4.0 |
5.0 |
NaN |
NaN |
level2 |
a |
NaN |
NaN |
5.0 |
6.0 |
c |
NaN |
NaN |
7.0 |
8.0 |
pd.concat([df1,df2],keys=[‘level1‘,‘level2‘],names=[‘upper‘,‘lower‘],sort=False,axis=1)
upper |
level1 |
level2 |
lower |
one |
two |
three |
four |
a |
0 |
1 |
5.0 |
6.0 |
b |
2 |
3 |
NaN |
NaN |
c |
4 |
5 |
7.0 |
8.0 |
df1=pd.DataFrame(np.random.randn(3,4),columns=[‘a‘,‘b‘,‘c‘,‘d‘]);df1
|
a |
b |
c |
d |
0 |
-0.285393 |
-0.625140 |
-0.244858 |
1.870425 |
1 |
-1.651745 |
-2.094833 |
0.233144 |
0.083170 |
2 |
2.497868 |
0.004263 |
1.376631 |
-0.497225 |
df2=pd.DataFrame(np.random.randn(2,3),columns=[‘b‘,‘d‘,‘a‘]);df2
|
b |
d |
a |
0 |
0.330073 |
-0.546400 |
-1.291143 |
1 |
-0.541348 |
-1.003454 |
1.578515 |
- A last consideration concerns DataFrames in which the row index does not contain any relevent data.
pd.concat([df1,df2],sort=False)
|
a |
b |
c |
d |
0 |
-0.285393 |
-0.625140 |
-0.244858 |
1.870425 |
1 |
-1.651745 |
-2.094833 |
0.233144 |
0.083170 |
2 |
2.497868 |
0.004263 |
1.376631 |
-0.497225 |
0 |
-1.291143 |
0.330073 |
NaN |
-0.546400 |
1 |
1.578515 |
-0.541348 |
NaN |
-1.003454 |
ignore_index
:Do not preserve indexes along concatenation axis,instead producing a new range(total_length) index.
pd.concat([df1,df2],sort=False,ignore_index=True)
|
a |
b |
c |
d |
0 |
-0.285393 |
-0.625140 |
-0.244858 |
1.870425 |
1 |
-1.651745 |
-2.094833 |
0.233144 |
0.083170 |
2 |
2.497868 |
0.004263 |
1.376631 |
-0.497225 |
3 |
-1.291143 |
0.330073 |
NaN |
-0.546400 |
4 |
1.578515 |
-0.541348 |
NaN |
-1.003454 |
pd.concat([df1,df2],axis=1)
|
a |
b |
c |
d |
b |
d |
a |
0 |
-0.285393 |
-0.625140 |
-0.244858 |
1.870425 |
0.330073 |
-0.546400 |
-1.291143 |
1 |
-1.651745 |
-2.094833 |
0.233144 |
0.083170 |
-0.541348 |
-1.003454 |
1.578515 |
2 |
2.497868 |
0.004263 |
1.376631 |
-0.497225 |
NaN |
NaN |
NaN |
pd.concat([df1,df2],axis=1,keys=[‘one‘,‘two‘])
|
one |
two |
|
a |
b |
c |
d |
b |
d |
a |
0 |
-0.285393 |
-0.625140 |
-0.244858 |
1.870425 |
0.330073 |
-0.546400 |
-1.291143 |
1 |
-1.651745 |
-2.094833 |
0.233144 |
0.083170 |
-0.541348 |
-1.003454 |
1.578515 |
2 |
2.497868 |
0.004263 |
1.376631 |
-0.497225 |
NaN |
NaN |
NaN |
pd.concat([df1,df2],axis=1,keys=[‘one‘,‘two‘],names=[‘name1‘,‘name2‘])
name1 |
one |
two |
name2 |
a |
b |
c |
d |
b |
d |
a |
0 |
-0.285393 |
-0.625140 |
-0.244858 |
1.870425 |
0.330073 |
-0.546400 |
-1.291143 |
1 |
-1.651745 |
-2.094833 |
0.233144 |
0.083170 |
-0.541348 |
-1.003454 |
1.578515 |
2 |
2.497868 |
0.004263 |
1.376631 |
-0.497225 |
NaN |
NaN |
NaN |
Combining data with overlap
help(np.where)
Help on built-in function where in module numpy.core.multiarray:
where(...)
where(condition, [x, y])
Return elements, either from `x` or `y`, depending on `condition`.
If only `condition` is given, return ``condition.nonzero()``.
Parameters
----------
condition : array_like, bool
When True, yield `x`, otherwise yield `y`.
x, y : array_like, optional
Values from which to choose. `x`, `y` and `condition` need to be
broadcastable to some shape.
Returns
-------
out : ndarray or tuple of ndarrays
If both `x` and `y` are specified, the output array contains
elements of `x` where `condition` is True, and elements from
`y` elsewhere.
If only `condition` is given, return the tuple
``condition.nonzero()``, the indices where `condition` is True.
See Also
--------
nonzero, choose
Notes
-----
If `x` and `y` are given and input arrays are 1-D, `where` is
equivalent to::
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
Examples
--------
>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
[3, 4]])
>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))
>>> x = np.arange(9.).reshape(3, 3)
>>> np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where( x > 3.0 )] # Note: result is 1D.
array([ 4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[ 0., 1., 2.],
[ 3., 4., -1.],
[-1., -1., -1.]])
Find the indices of elements of `x` that are in `goodvalues`.
>>> goodvalues = [3, 4, 7]
>>> ix = np.isin(x, goodvalues)
>>> ix
array([[False, False, False],
[ True, True, False],
[False, True, False]])
>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))
x=np.arange(9).reshape(3,3);x
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
np.where(x>5)
(array([2, 2, 2], dtype=int64), array([0, 1, 2], dtype=int64))
x[np.where(x>5)]
array([6, 7, 8])
x[(np.array([2,2,2]),np.array([0,1,2]))]
array([6, 7, 8])
x[2]
array([6, 7, 8])
There is another data combination situation that cannot be expressed as either a merge or concatenation operation.You may have two datasets whose indexes overlap in full or part.As a motivating example,consider Numpy‘s where
function,which performs the array-oriented equivalent of an if-else expression.
a=pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index=[‘f‘,‘e‘,‘d‘,‘c‘,‘b‘,‘a‘]);a
f NaN
e 2.5
d NaN
c 3.5
b 4.5
a NaN
dtype: float64
b=pd.Series(np.arange(len(a),dtype=np.float64),index=[‘f‘,‘e‘,‘d‘,‘c‘,‘b‘,‘a‘]);b
f 0.0
e 1.0
d 2.0
c 3.0
b 4.0
a 5.0
dtype: float64
b[-1]=np.nan;b
f 0.0
e 1.0
d 2.0
c 3.0
b 4.0
a NaN
dtype: float64
pd.isnull(a)
f True
e False
d True
c False
b False
a True
dtype: bool
np.where(pd.isnull(a),b,a)
array([0. , 2.5, 2. , 3.5, 4.5, nan])
- Series has a
combine_first
method,which performs the equivalent of this operation along with pandas‘s usual data alignment logic:
help(pd.Series.combine_first)
Help on function combine_first in module pandas.core.series:
combine_first(self, other)
Combine Series values, choosing the calling Series‘s values
first. Result index will be the union of the two indexes
Parameters
----------
other : Series
Returns
-------
combined : Series
Examples
--------
>>> s1 = pd.Series([1, np.nan])
>>> s2 = pd.Series([3, 4])
>>> s1.combine_first(s2)
0 1.0
1 4.0
dtype: float64
See Also
--------
Series.combine : Perform elementwise operation on two Series
using a given function
b
f 0.0
e 1.0
d 2.0
c 3.0
b 4.0
a NaN
dtype: float64
b[:-2]
f 0.0
e 1.0
d 2.0
c 3.0
dtype: float64
a[2:]
d NaN
c 3.5
b 4.5
a NaN
dtype: float64
a
f NaN
e 2.5
d NaN
c 3.5
b 4.5
a NaN
dtype: float64
b[:-2].combine_first(a[2:]) # Combine Series values, choosing the calling Series‘s values first. Result index will be the union of the two indexes
a NaN
b 4.5
c 3.0
d 2.0
e 1.0
f 0.0
dtype: float64
df1=pd.DataFrame({‘a‘:[1,np.nan,5,np.nan],‘b‘:[np.nan,2,np.nan,6],
‘c‘:range(2,18,4)});df1
|
a |
b |
c |
0 |
1.0 |
NaN |
2 |
1 |
NaN |
2.0 |
6 |
2 |
5.0 |
NaN |
10 |
3 |
NaN |
6.0 |
14 |
df2=pd.DataFrame({‘a‘:[5,4,np.nan,3,7],‘b‘:[np.nan,3,4,6,8]});df2
|
a |
b |
0 |
5.0 |
NaN |
1 |
4.0 |
3.0 |
2 |
NaN |
4.0 |
3 |
3.0 |
6.0 |
4 |
7.0 |
8.0 |
df1.combine_first(df2)
|
a |
b |
c |
0 |
1.0 |
NaN |
2.0 |
1 |
4.0 |
2.0 |
6.0 |
2 |
5.0 |
4.0 |
10.0 |
3 |
3.0 |
6.0 |
14.0 |
4 |
7.0 |
8.0 |
NaN |
With DattaFrames,combine_first
does the same thing column by column,so you can think of it as ‘patching‘ missing data in the calling object with data from the object you pass.
Reshaping and pivoting
Reshaping with Hierarchical indexing
stack
This ‘rotates‘ or pivots from the columns in the data to the rows
unstack
This pivots from the rows into the columns
The word stack
can be thought as the stack of index.
data=pd.DataFrame(np.arange(6).reshape((2,3)),index=pd.Index([‘Ohio‘,‘Colorado‘],name=‘state‘),columns=pd.Index([‘one‘,‘two‘,‘three‘],name=‘number‘));data
number |
one |
two |
three |
state |
|
|
|
Ohio |
0 |
1 |
2 |
Colorado |
3 |
4 |
5 |
The reason why put index=pd.Index is to use name
parameter in pd.Index,and that is not in pd.DataFrame.
result=data.stack()
result
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int32
From a hierarchically indexed Series,you can rearrange the data back into a DataFrame with unstack
.
result.unstack()
number |
one |
two |
three |
state |
|
|
|
Ohio |
0 |
1 |
2 |
Colorado |
3 |
4 |
5 |
- By default, the innermost level is unstacked(same with stack).You can unstack a different level by passing a level number of name.
result.unstack(‘state‘)
state |
Ohio |
Colorado |
number |
|
|
one |
0 |
3 |
two |
1 |
4 |
three |
2 |
5 |
result.unstack(0)
state |
Ohio |
Colorado |
number |
|
|
one |
0 |
3 |
two |
1 |
4 |
three |
2 |
5 |
result
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int32
result.unstack()#the default level is innermost level,‘number‘
number |
one |
two |
three |
state |
|
|
|
Ohio |
0 |
1 |
2 |
Colorado |
3 |
4 |
5 |
result.unstack(1) # The innermost level is ‘number‘
number |
one |
two |
three |
state |
|
|
|
Ohio |
0 |
1 |
2 |
Colorado |
3 |
4 |
5 |
- Unstacking might introduces missing data if all of the values in the level are not found in each of the subgroups.
s1=pd.Series([0,1,2,3],index=[‘a‘,‘b‘,‘c‘,‘d‘]);s1
a 0
b 1
c 2
d 3
dtype: int64
s2=pd.Series([4,5,6],index=[‘c‘,‘d‘,‘e‘]);s2
c 4
d 5
e 6
dtype: int64
data2=pd.concat([s1,s2],keys=[‘one‘,‘two‘]);data2
one a 0
b 1
c 2
d 3
two c 4
d 5
e 6
dtype: int64
data2.unstack()
|
a |
b |
c |
d |
e |
one |
0.0 |
1.0 |
2.0 |
3.0 |
NaN |
two |
NaN |
NaN |
4.0 |
5.0 |
6.0 |
data2.unstack().stack()
one a 0.0
b 1.0
c 2.0
d 3.0
two c 4.0
d 5.0
e 6.0
dtype: float64
data2.unstack().stack(dropna=False)
one a 0.0
b 1.0
c 2.0
d 3.0
e NaN
two a NaN
b NaN
c 4.0
d 5.0
e 6.0
dtype: float64
- When you unstack in a DataFrame,the level unstacked becomes the lowest level in the result:
result
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int32
df=pd.DataFrame({‘left‘:result,‘right‘:result+5},columns=pd.Index([‘left‘,‘right‘],name=‘side‘));df # parameter `name` rather than names!
|
side |
left |
right |
state |
number |
|
|
Ohio |
one |
0 |
5 |
two |
1 |
6 |
three |
2 |
7 |
Colorado |
one |
3 |
8 |
two |
4 |
9 |
three |
5 |
10 |
df.unstack(‘state‘)
side |
left |
right |
state |
Ohio |
Colorado |
Ohio |
Colorado |
number |
|
|
|
|
one |
0 |
3 |
5 |
8 |
two |
1 |
4 |
6 |
9 |
three |
2 |
5 |
7 |
10 |
df.unstack(‘number‘)
side |
left |
right |
number |
one |
two |
three |
one |
two |
three |
state |
|
|
|
|
|
|
Ohio |
0 |
1 |
2 |
5 |
6 |
7 |
Colorado |
3 |
4 |
5 |
8 |
9 |
10 |
When calling stack
,we can indicate the name of the axis to stack.
df.unstack(‘state‘).stack(‘side‘)
|
state |
Colorado |
Ohio |
number |
side |
|
|
one |
left |
3 |
0 |
right |
8 |
5 |
two |
left |
4 |
1 |
right |
9 |
6 |
three |
left |
5 |
2 |
right |
10 |
7 |
data=pd.read_csv(r‘G:\PycharmProject\DataAnalysis\pydata-book-2nd-edition\examples\macrodata.csv‘)
data.head()
|
year |
quarter |
realgdp |
realcons |
realinv |
realgovt |
realdpi |
cpi |
m1 |
tbilrate |
unemp |
pop |
infl |
realint |
0 |
1959.0 |
1.0 |
2710.349 |
1707.4 |
286.898 |
470.045 |
1886.9 |
28.98 |
139.7 |
2.82 |
5.8 |
177.146 |
0.00 |
0.00 |
1 |
1959.0 |
2.0 |
2778.801 |
1733.7 |
310.859 |
481.301 |
1919.7 |
29.15 |
141.7 |
3.08 |
5.1 |
177.830 |
2.34 |
0.74 |
2 |
1959.0 |
3.0 |
2775.488 |
1751.8 |
289.226 |
491.260 |
1916.4 |
29.35 |
140.5 |
3.82 |
5.3 |
178.657 |
2.74 |
1.09 |
3 |
1959.0 |
4.0 |
2785.204 |
1753.7 |
299.356 |
484.052 |
1931.3 |
29.37 |
140.0 |
4.33 |
5.6 |
179.386 |
0.27 |
4.06 |
4 |
1960.0 |
1.0 |
2847.699 |
1770.5 |
331.722 |
462.199 |
1955.5 |
29.54 |
139.6 |
3.50 |
5.2 |
180.007 |
2.31 |
1.19 |
periods=pd.PeriodIndex(year=data.year,quarter=data.quarter,name=‘date‘)
columns=pd.Index([‘realgdp‘,‘infl‘,‘unemp‘],name=‘item‘);columns
Index([‘realgdp‘, ‘infl‘, ‘unemp‘], dtype=‘object‘, name=‘item‘)
data=data.reindex(columns=columns)
help(data.reindex)
Help on method reindex in module pandas.core.frame:
reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=nan, limit=None, tolerance=None) method of pandas.core.frame.DataFrame instance
Conform DataFrame to new index with optional filling logic, placing
NA/NaN in locations having no value in the previous index. A new object
is produced unless the new index is equivalent to the current one and
copy=False
Parameters
----------
labels : array-like, optional
New labels / index to conform the axis specified by ‘axis‘ to.
index, columns : array-like, optional (should be specified using keywords)
New labels / index to conform to. Preferably an Index object to
avoid duplicating data
axis : int or str, optional
Axis to target. Can be either the axis name (‘index‘, ‘columns‘)
or number (0, 1).
method : {None, ‘backfill‘/‘bfill‘, ‘pad‘/‘ffill‘, ‘nearest‘}, optional
method to use for filling holes in reindexed DataFrame.
Please note: this is only applicable to DataFrames/Series with a
monotonically increasing/decreasing index.
* default: don‘t fill gaps
* pad / ffill: propagate last valid observation forward to next
valid
* backfill / bfill: use next valid observation to fill gap
* nearest: use nearest valid observations to fill gap
copy : boolean, default True
Return a new object, even if the passed indexes are the same
level : int or name
Broadcast across a level, matching Index values on the
passed MultiIndex level
fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any
"compatible" value
limit : int, default None
Maximum number of consecutive elements to forward or backward fill
tolerance : optional
Maximum distance between original and new labels for inexact
matches. The values of the index at the matching locations most
satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
Tolerance may be a scalar value, which applies the same tolerance
to all values, or list-like, which applies variable tolerance per
element. List-like includes list, tuple, array, Series, and must be
the same size as the index and its dtype must exactly match the
index‘s type.
.. versionadded:: 0.21.0 (list-like tolerance)
Examples
--------
``DataFrame.reindex`` supports two calling conventions
* ``(index=index_labels, columns=column_labels, ...)``
* ``(labels, axis={‘index‘, ‘columns‘}, ...)``
We *highly* recommend using keyword arguments to clarify your
intent.
Create a dataframe with some fictional data.
>>> index = [‘Firefox‘, ‘Chrome‘, ‘Safari‘, ‘IE10‘, ‘Konqueror‘]
>>> df = pd.DataFrame({
... ‘http_status‘: [200,200,404,404,301],
... ‘response_time‘: [0.04, 0.02, 0.07, 0.08, 1.0]},
... index=index)
>>> df
http_status response_time
Firefox 200 0.04
Chrome 200 0.02
Safari 404 0.07
IE10 404 0.08
Konqueror 301 1.00
Create a new index and reindex the dataframe. By default
values in the new index that do not have corresponding
records in the dataframe are assigned ``NaN``.
>>> new_index= [‘Safari‘, ‘Iceweasel‘, ‘Comodo Dragon‘, ‘IE10‘,
... ‘Chrome‘]
>>> df.reindex(new_index)
http_status response_time
Safari 404.0 0.07
Iceweasel NaN NaN
Comodo Dragon NaN NaN
IE10 404.0 0.08
Chrome 200.0 0.02
We can fill in the missing values by passing a value to
the keyword ``fill_value``. Because the index is not monotonically
increasing or decreasing, we cannot use arguments to the keyword
``method`` to fill the ``NaN`` values.
>>> df.reindex(new_index, fill_value=0)
http_status response_time
Safari 404 0.07
Iceweasel 0 0.00
Comodo Dragon 0 0.00
IE10 404 0.08
Chrome 200 0.02
>>> df.reindex(new_index, fill_value=‘missing‘)
http_status response_time
Safari 404 0.07
Iceweasel missing missing
Comodo Dragon missing missing
IE10 404 0.08
Chrome 200 0.02
We can also reindex the columns.
>>> df.reindex(columns=[‘http_status‘, ‘user_agent‘])
http_status user_agent
Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN
Or we can use "axis-style" keyword arguments
>>> df.reindex([‘http_status‘, ‘user_agent‘], axis="columns")
http_status user_agent
Firefox 200 NaN
Chrome 200 NaN
Safari 404 NaN
IE10 404 NaN
Konqueror 301 NaN
To further illustrate the filling functionality in
``reindex``, we will create a dataframe with a
monotonically increasing index (for example, a sequence
of dates).
>>> date_index = pd.date_range(‘1/1/2010‘, periods=6, freq=‘D‘)
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
... index=date_index)
>>> df2
prices
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
Suppose we decide to expand the dataframe to cover a wider
date range.
>>> date_index2 = pd.date_range(‘12/29/2009‘, periods=10, freq=‘D‘)
>>> df2.reindex(date_index2)
prices
2009-12-29 NaN
2009-12-30 NaN
2009-12-31 NaN
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN
The index entries that did not have a value in the original data frame
(for example, ‘2009-12-29‘) are by default filled with ``NaN``.
If desired, we can fill in the missing values using one of several
options.
For example, to backpropagate the last valid value to fill the ``NaN``
values, pass ``bfill`` as an argument to the ``method`` keyword.
>>> df2.reindex(date_index2, method=‘bfill‘)
prices
2009-12-29 100
2009-12-30 100
2009-12-31 100
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN
Please note that the ``NaN`` value present in the original dataframe
(at index value 2010-01-03) will not be filled by any of the
value propagation schemes. This is because filling while reindexing
does not look at dataframe values, but only compares the original and
desired indexes. If you do want to fill in the ``NaN`` values present
in the original dataframe, use the ``fillna()`` method.
See the :ref:`user guide <basics.reindexing>` for more.
Returns
-------
reindexed : DataFrame
ldata=data.stack().reset_index().rename(columns={‘0‘:‘value‘})
ldata[:10]
|
level_0 |
item |
0 |
0 |
0 |
realgdp |
2710.349 |
1 |
0 |
infl |
0.000 |
2 |
0 |
unemp |
5.800 |
3 |
1 |
realgdp |
2778.801 |
4 |
1 |
infl |
2.340 |
5 |
1 |
unemp |
5.100 |
6 |
2 |
realgdp |
2775.488 |
7 |
2 |
infl |
2.740 |
8 |
2 |
unemp |
5.300 |
9 |
3 |
realgdp |
2785.204 |
An inverse operation to pivot
for DataFrames is pands.melt
.Rather than transforming one column into many in a new DataFrame, it mergers multiple columns into one,producing a DataFrame that is longer than the input.
help(pd.DataFrame.melt)
Help on function melt in module pandas.core.frame:
melt(self, id_vars=None, value_vars=None, var_name=None, value_name=‘value‘, col_level=None)
"Unpivots" a DataFrame from wide format to long format, optionally
leaving identifier variables set.
This function is useful to massage a DataFrame into a format where one
or more columns are identifier variables (`id_vars`), while all other
columns, considered measured variables (`value_vars`), are "unpivoted" to
the row axis, leaving just two non-identifier columns, ‘variable‘ and
‘value‘.
.. versionadded:: 0.20.0
Parameters
----------
frame : DataFrame
id_vars : tuple, list, or ndarray, optional
Column(s) to use as identifier variables.
value_vars : tuple, list, or ndarray, optional
Column(s) to unpivot. If not specified, uses all columns that
are not set as `id_vars`.
var_name : scalar
Name to use for the ‘variable‘ column. If None it uses
``frame.columns.name`` or ‘variable‘.
value_name : scalar, default ‘value‘
Name to use for the ‘value‘ column.
col_level : int or string, optional
If columns are a MultiIndex then use this level to melt.
See also
--------
melt
pivot_table
DataFrame.pivot
Examples
--------
>>> import pandas as pd
>>> df = pd.DataFrame({‘A‘: {0: ‘a‘, 1: ‘b‘, 2: ‘c‘},
... ‘B‘: {0: 1, 1: 3, 2: 5},
... ‘C‘: {0: 2, 1: 4, 2: 6}})
>>> df
A B C
0 a 1 2
1 b 3 4
2 c 5 6
>>> df.melt(id_vars=[‘A‘], value_vars=[‘B‘])
A variable value
0 a B 1
1 b B 3
2 c B 5
>>> df.melt(id_vars=[‘A‘], value_vars=[‘B‘, ‘C‘])
A variable value
0 a B 1
1 b B 3
2 c B 5
3 a C 2
4 b C 4
5 c C 6
The names of ‘variable‘ and ‘value‘ columns can be customized:
>>> df.melt(id_vars=[‘A‘], value_vars=[‘B‘],
... var_name=‘myVarname‘, value_name=‘myValname‘)
A myVarname myValname
0 a B 1
1 b B 3
2 c B 5
If you have multi-index columns:
>>> df.columns = [list(‘ABC‘), list(‘DEF‘)]
>>> df
A B C
D E F
0 a 1 2
1 b 3 4
2 c 5 6
>>> df.melt(col_level=0, id_vars=[‘A‘], value_vars=[‘B‘])
A variable value
0 a B 1
1 b B 3
2 c B 5
>>> df.melt(id_vars=[(‘A‘, ‘D‘)], value_vars=[(‘B‘, ‘E‘)])
(A, D) variable_0 variable_1 value
0 a B E 1
1 b B E 3
2 c B E 5
df=pd.DataFrame({‘key‘:[‘foo‘,‘bar‘,‘baz‘],
‘A‘:[1,2,3],
‘B‘:[4,5,6],
‘C‘:[7,8,9]});df
|
key |
A |
B |
C |
0 |
foo |
1 |
4 |
7 |
1 |
bar |
2 |
5 |
8 |
2 |
baz |
3 |
6 |
9 |
melted=pd.melt(df,[‘key‘]);melted
|
key |
variable |
value |
0 |
foo |
A |
1 |
1 |
bar |
A |
2 |
2 |
baz |
A |
3 |
3 |
foo |
B |
4 |
4 |
bar |
B |
5 |
5 |
baz |
B |
6 |
6 |
foo |
C |
7 |
7 |
bar |
C |
8 |
8 |
baz |
C |
9 |
reshaped=melted.pivot(‘key‘,‘variable‘,‘value‘);reshaped
variable |
A |
B |
C |
key |
|
|
|
bar |
2 |
5 |
8 |
baz |
3 |
6 |
9 |
foo |
1 |
4 |
7 |
reshaped.reset_index()
variable |
key |
A |
B |
C |
0 |
bar |
2 |
5 |
8 |
1 |
baz |
3 |
6 |
9 |
2 |
foo |
1 |
4 |
7 |
pd.melt(df,id_vars=[‘key‘],value_vars=[‘A‘,‘B‘])
|
key |
variable |
value |
0 |
foo |
A |
1 |
1 |
bar |
A |
2 |
2 |
baz |
A |
3 |
3 |
foo |
B |
4 |
4 |
bar |
B |
5 |
5 |
baz |
B |
6 |
pd.melt(df,value_vars=[‘A‘,‘B‘,‘C‘])
|
variable |
value |
0 |
A |
1 |
1 |
A |
2 |
2 |
A |
3 |
3 |
B |
4 |
4 |
B |
5 |
5 |
B |
6 |
6 |
C |
7 |
7 |
C |
8 |
8 |
C |
9 |
Data wrangling:Join,Combine,and Reshape,in Pandas
标签:because main expand osi class red **kwargs lse decide
原文地址:https://www.cnblogs.com/johnyang/p/12735061.html