标签:new tps 正式 并且 tab thml sch splay commons
回文数或回文数是指一个像14641这样“对称”的数,即:将这个数的数字按相反的顺序重新排列后,所得到的数和原来的数一样。这里,“回文”是指像“妈妈爱我,我爱妈妈”这样的,正读反读都相同的单词或句子。
回文数在休闲数学领域备受关注。一个典型的问题就是,寻找那些具有某种特性,并且符合回文特征的数。例如:
巴克敏斯特·福乐在其着作《协同学》(Synergetics)中把回文数也叫做沙拉扎数(Scheherazade Numbers),沙拉扎是《一千零一夜》中那位讲故事的王妃、即宰相的女儿的名字。
直观地,在任意的进位制下都存在着无穷多个回文数。可以这样说明:在任意的基下,一个像101, 1001, 10001,… (即由一个1后接n个0再后接一个1)这样的数可组成一个无穷多项的序列,其各项全部都是回文数,因此这个基下的回文数有无穷多个(其中包括但不限于该序列中的无穷多个项)。
虽然通常是在十进制系统下来考虑回文数,但回文性的性质可推广用于任何记数系统中的自然数。考虑以 {\displaystyle b\ (b\geq 2)} 为基的数 {\displaystyle n\ (ngt;0)},在基 {\displaystyle b} 下,{\displaystyle n} 可按标准方式表示为 {\displaystyle k+1} 个数字 {\displaystyle a_{i}},即:
其中,如惯例,对所有 {\displaystyle i} 都要求 {\displaystyle 0\leq a_{i}\leq b},且 {\displaystyle a_{k}\neq 0}。 则 {\displaystyle n} 称为回文数,当且仅当对所有 {\displaystyle i} 都有{\displaystyle a_{i}=a_{k-i}}。零在任何基下均写作 0 并由定义认为它也是回文数。
另一种等价的定义如下:在任意固定的基 {\displaystyle b} 下,数{\displaystyle n}称为回文的当且仅当:
10基数下,所有单个数字{0、1、2、3、4、5、6、7、8、9}都是回文数。
两位数的回文数有9个:
三位数中有90个回文数:
四位数中也有90个回文数:
因此总共有199个小于104的回文数。小于105的回文数有1099个,对其它的10的整数幂10n来说,分别有:1999, 10999, 19999, 109999, 199999, 1099999, ... (OEIS中的数列A070199)个回文数。下表列出了一些常见类型的回文数在这些10的幂为界限下的个数(其中包括将0也作为一个回文数):
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 1010 | |
n为自然数 | 10 | 19 | 109 | 199 | 1099 | 1999 | 10999 | 19999 | 109999 | 199999 |
n为偶数 | 5 | 9 | 49 | 89 | 489 | 889 | 4889 | 8889 | 48889 | 88889 |
n为奇数 | 5 | 10 | 60 | 110 | 610 | 1110 | 6110 | 11110 | 61110 | 111110 |
n为完全平方数 | 3 | 6 | 13 | 14 | 19 | + | + | |||
n为素数 | 4 | 5 | 20 | 113 | 781 | 5953 | ||||
n为因数中不含平方数的数 | 6 | 12 | 67 | 120 | 675 | + | + | + | + | + |
n为可被某平方数整除的数(即μ(n)=0) | 3 | 6 | 41 | 78 | 423 | + | + | + | + | + |
n为素数的平方数 | 2 | 3 | 5 | |||||||
n具有偶数个相异的素因子(即μ(n)=1) | 2 | 6 | 35 | 56 | 324 | + | + | + | + | + |
n具有奇数个相异的素因子(即μ(n)=-1) | 5 | 7 | 33 | 65 | 352 | + | + | + | + | + |
n本身为偶数并具有奇数个素因子 | ||||||||||
n本身为偶数并具有奇数个相异的素因子 | 1 | 2 | 9 | 21 | 100 | + | + | + | + | + |
n本身为奇数并具有奇数个素因子 | 0 | 1 | 12 | 37 | 204 | + | + | + | + | + |
n本身为奇数并具有奇数个相异的素因子 | 0 | 0 | 4 | 24 | 139 | + | + | + | + | + |
n本身为偶数且因子中无平方数、有偶数个相异素因子 | 1 | 2 | 11 | 15 | 98 | + | + | + | + | + |
n本身为奇数且因子中无平方数、有偶数个相异素因子 | 1 | 4 | 24 | 41 | 226 | + | + | + | + | + |
n为奇数并具有正好两个素因子 | 1 | 4 | 25 | 39 | 205 | + | + | + | + | + |
n为偶数并具有正好两个素因子 | 2 | 3 | 11 | 64 | + | + | + | + | + | |
n为偶数并具有正好三个素因子 | 1 | 3 | 14 | 24 | 122 | + | + | + | + | + |
n为偶数并具有正好三个相异的素因子 | ||||||||||
n为奇数并具有正好三个素因子 | 0 | 1 | 12 | 34 | 173 | + | + | + | + | + |
n为卡迈克尔数 | 0 | 0 | 0 | 0 | 0 | 1+ | + | + | + | + |
n为满足σ(n)是回文数的数 | 6 | 10 | 47 | 114 | 688 | + | + | + | + | + |
也可在十进制以外的其它数系中考虑回文数。例如,在二进制中的回文数有:
以上这些数在十进制中即:0, 1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33,…(OEIS中的数列A006995)。梅森素数构成了二进制回文素数的一个子集。
通常在一个基数下的回文数在另一个基数下就不再是回文数。例如:1646110 = 404D16。(下标的数字表示的是基数,即n16表示以十六进制写出的n)。然而,有些数字在几个基数中都是回文数(称为“协回文的”,copalindromic),例如10510在五个不同的基数下都是回文数:12214 = 1518 = 7714 = 5520 = 3334;十进制数1991在十六进制中为7C7,也是回文的。
在以18为基时,7的一些幂是回文的:
对任意数n,在所有b ≥ n + 1的基数b下都是回文的(因为这时n是一个单位数);在基为n−1时同样也是回文数(因为这时n就成了11n−1)。如果对于2 ≤ b ≤ n − 2,某数在基b下都是非回文数,则称其是一个严格非回文数(Strictly non-palindromic number)。例如6在二进制是110,三进制是20,四进制是12,都不是回文数,因此它是严格非回文数。这样的数其中一个特质是6以上的数都是质数。首几项:1, 2, 3, 4, 6, 11, 19, 47, 53, 79, 103, ... (OEIS中的数列A016038)。
回文数或回文数是指一个像14641这样“对称”的数,即:将这个数的数字按相反的顺序重新排列后,所得到的数和原来的数一样。这里,“回文”是指像“妈妈爱我,我爱妈妈”这样的,正读反读都相同的单词或句子。
标签:new tps 正式 并且 tab thml sch splay commons
原文地址:https://www.cnblogs.com/xuanbjut/p/12744480.html