标签:ack cli master ctr cores get nbsp ORC core
package cf import breeze.numerics.{pow, sqrt} import org.apache.spark.sql.SparkSession object UserCF { def main(args: Array[String]): Unit = { // 多行转一行的快捷键:ctrl shift j val spark = SparkSession .builder() .appName("test") .master("local[2]") .enableHiveSupport() .getOrCreate() val df = spark.sql("select user_id,item_id,rating from badou.udata") // 1. 计算相似用户 cosine = a*b/(|a|*|b|) import spark.implicits._ // 求分母部分|a| (|b|) val userScoreSum = df.rdd.map(x=>(x(0).toString,x(2).toString)) .groupByKey() .mapValues(x=>sqrt(x.toArray.map(rating=>pow(rating.toDouble,2)).sum)) .toDF("user_id","rating_sqrt_sum") // 1.1 item->user倒排表 // val df3 = df.selectExpr("user_id").distinct().filter("cast(user_id as bigint)<=3") // df3.join(df3.selectExpr("user_id as user_v")).show() val df_v = df.selectExpr("user_id as user_v","item_id","rating as rating_v") val df_decare = df.join(df_v,"item_id") .filter("cast(user_id as long)<>cast(user_v as long)") // 计算两个用户在一个item下的评分的乘积,cosine公式的分子中的一部分 val df_product = df_decare.selectExpr("user_id","user_v", "cast(rating as double)*cast(rating_v as double) as prod") // 求和,计算完整的分子部分 val df_sim_group = df_product.groupBy("user_id","user_v") .agg("prod"->"sum").withColumnRenamed("sum(prod)","rating_dot") val userScoreSum_v = userScoreSum.selectExpr("user_id as user_v", "rating_sqrt_sum as rating_sqrt_sum_v") val df_sim = df_sim_group.join(userScoreSum,"user_id") .join(userScoreSum_v,"user_v") .selectExpr("user_id","user_v", "rating_dot/(rating_sqrt_sum*rating_sqrt_sum_v) as cosine_sim") // 2.获取相似用户的物品集合 // 2.1 取得前n个相似用户 val df_nsim = df_sim.rdd.map(x=>(x(0).toString,(x(1).toString,x(2).toString))) .groupByKey() .mapValues(_.toArray.sortWith((x,y)=>x._2>y._2).slice(0,10)) .flatMapValues(x=>x).toDF("user_id","user_v_sim") .selectExpr("user_id","user_v_sim._1 as user_v","user_v_sim._2 as sim") // 2.2 获取用户的物品集合进行过滤 // 获取user_id物品集合(同样能把user_v的物品集合取到) val df_user_item = df.rdd.map(x=>(x(0).toString,x(1).toString+"_"+x(2).toString)) .groupByKey().mapValues(_.toArray).toDF("user_id","item_rating_arr") val df_user_item_v = df_user_item.selectExpr("user_id as user_v", "item_rating_arr as item_rating_arr_v") val df_gen_item = df_nsim.join(df_user_item,"user_id") .join(df_user_item_v,"user_v") // 2.3 用一个udf过滤相似用户user_v中包含user_id已经打过分的电影 import org.apache.spark.sql.functions._ val filter_udf = udf{(items:Seq[String],items_v:Seq[String])=> val fMap = items.map{x=> val l = x.split("_") (l(0),l(1)) }.toMap items_v.filter{x=> val l=x.split("_") fMap.getOrElse(l(0),-1) == -1 } } val df_filter_item = df_gen_item.withColumn("filtered_item", filter_udf(col("item_rating_arr"),col("item_rating_arr_v"))) .select("user_id","sim","filtered_item") /**df_filter_item: * +-------+-------------------+--------------------+ |user_id| sim| filtered_item| +-------+-------------------+--------------------+ | 71|0.33828954632615976|[705_5, 508_5, 20...| | 753| 0.3968472894511972|[705_5, 508_5, 20...| | 376|0.32635213497817583|[508_5, 20_5, 228...| | 360| 0.4425631904462532|[705_5, 508_5, 20...| | 607| 0.29815005758727|[705_5, 508_5, 20...| | 392| 0.3704196358220336|[508_5, 20_5, 228...| * */ // 2.4 公式计算 ①相似度*②rating val simRatingUDF = udf{(sim:Double,items:Seq[String])=> items.map{x=> val l = x.split("_") l(0)+"_"+l(1).toDouble*sim } } val itemSimRating = df_filter_item.withColumn("item_prod", simRatingUDF(col("sim"),col("filtered_item"))) .select("user_id","item_prod") /**itemSimRating: * +-------+--------------------+ |user_id| item_prod| +-------+--------------------+ | 71|[705_1.6914477316...| | 753|[705_1.9842364472...| | 376|[508_1.6317606748...| | 360|[705_2.2128159522...| | 607|[705_1.4907502879.../ * */ // 957964 val userItemScore = itemSimRating.select(itemSimRating("user_id"), explode(itemSimRating("item_prod"))).toDF("user_id","item_prod") .selectExpr("user_id","split(item_prod,‘_‘)[0] as item_id", "cast(split(item_prod,‘_‘)[1] as double) as score") // 388485 // 同一个用户,通过不同的相似用户产生相同的item,对应不一样的打分 sum求和重复的item的分值 val userItemScoreSum = userItemScore.groupBy("user_id","item_id") .agg("score"->"sum").withColumnRenamed("sum(score)","last_score") val df_rec = userItemScoreSum.rdd.map(x=>(x(0).toString,(x(1).toString,x(2).toString))) .groupByKey() .mapValues(_.toArray.sortWith((x,y)=>x._2>y._2).slice(0,10)) .flatMapValues(x=>x).toDF("user_id","item_sim") .selectExpr("user_id","item_sim._1 as item","item_sim._2 as score") } }
标签:ack cli master ctr cores get nbsp ORC core
原文地址:https://www.cnblogs.com/xumaomao/p/12757710.html