码迷,mamicode.com
首页 > 其他好文 > 详细

RDD中WithScope

时间:2020-04-24 01:04:51      阅读:81      评论:0      收藏:0      [点我收藏+]

标签:was   use   csdn   tin   ber   封装   art   get   lock   

withScope是最近的发现版中新增加的一个模块,它是用来做DAG可视化的(DAG visualization on SparkUI)

以前的sparkUI中只有stage的执行情况,也就是说我们不可以看到上个RDD到下个RDD的具体信息。于是为了在

sparkUI中能展示更多的信息。所以把所有创建的RDD的方法都包裹起来,同时用RDDOperationScope 记录 RDD 的操作历史和关联,就能达成目标。下面就是一张WordCount的DAG visualization on SparkUI

技术图片

在通过看RDD源码理解各算子的作用时, 总能看到withScope, withScope到底是个什么东西?

首先需要了解几个东西: scala柯里化(currying), 贷出模式(loan pattern)

scala柯里化(currying)

在scala中, 一个经过柯里化的函数在应用时支持多个参数列表,而不是只有一个。当第一次调用只传入第一个参数时,返回一个用于第二次调用的函数值。

scala> def curriedSum(x: Int)(y: Int) = x + y
curriedSum: (x: Int)(y: Int)
scala> curriedSum(1)(2)
res1: Int = 3
scala> val add3 = curriedSum(3)_
add3: Int => Int = <function1>
scala> add3(4)
res2: Int = 7

curriedSum(3)__是占位符, 表示第二个参数先不传, 返回值是一个函数值。
我们看RDD源码

/**
   * Execute a block of code in a scope such that all new RDDs created in this body will
   * be part of the same scope. For more detail, see {{org.apache.spark.rdd.RDDOperationScope}}.
   *
   * Note: Return statements are NOT allowed in the given body.
   */
  private[spark] def withScope[U](body: => U): U = RDDOperationScope.withScope[U](sc)(body) // 这里用了柯里化

贷出模式(loan pattern)

把公共部分(函数体)抽出来封装成方法, 把非公共部分通过函数值传进来

/**
   * Execute the given body such that all RDDs created in this body will have the same scope.
   *
   * If nesting is allowed, any subsequent calls to this method in the given body will instantiate
   * child scopes that are nested within our scope. Otherwise, these calls will take no effect.
   *
   * Additionally, the caller of this method may optionally ignore the configurations and scopes
   * set by the higher level caller. In this case, this method will ignore the parent caller‘s
   * intention to disallow nesting, and the new scope instantiated will not have a parent. This
   * is useful for scoping physical operations in Spark SQL, for instance.
   *
   * Note: Return statements are NOT allowed in body.
   */
  private[spark] def withScope[T](
      sc: SparkContext,
      name: String,
      allowNesting: Boolean,
      ignoreParent: Boolean)(body: => T): T = {
    // Save the old scope to restore it later
    val scopeKey = SparkContext.RDD_SCOPE_KEY
    val noOverrideKey = SparkContext.RDD_SCOPE_NO_OVERRIDE_KEY
    val oldScopeJson = sc.getLocalProperty(scopeKey)
    val oldScope = Option(oldScopeJson).map(RDDOperationScope.fromJson)
    val oldNoOverride = sc.getLocalProperty(noOverrideKey)
    try {
      if (ignoreParent) {
        // Ignore all parent settings and scopes and start afresh with our own root scope
        sc.setLocalProperty(scopeKey, new RDDOperationScope(name).toJson)
      } else if (sc.getLocalProperty(noOverrideKey) == null) {
        // Otherwise, set the scope only if the higher level caller allows us to do so
        sc.setLocalProperty(scopeKey, new RDDOperationScope(name, oldScope).toJson)
      }
      // Optionally disallow the child body to override our scope
      if (!allowNesting) {
        sc.setLocalProperty(noOverrideKey, "true")
      }
      body // 非公共部分
    } finally {
      // Remember to restore any state that was modified before exiting
      sc.setLocalProperty(scopeKey, oldScopeJson)
      sc.setLocalProperty(noOverrideKey, oldNoOverride)
    }
  }

因为每个RDD算子方法,都有共同部分和共同参数, 所以这里用withScope封装了公共部分代码, 用柯里化把共同参数先传进去。
然后非公共部分代码,通过第二个参数传进去。这里body参数就是非公共部分函数值。

理解算子

/**
   * Return a new RDD by applying a function to all elements of this RDD.
   */
  def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
  }

这里就举一个例子, map方法
其实这里是相当于直接调用withScope方法, 后面花括号里面的是函数字面量, 是参数。
在scala中,当方法只有一个参数时, 后面可以用花括号代替圆括号。

原文链接:https://blog.csdn.net/scl323/article/details/89705954

RDD中WithScope

标签:was   use   csdn   tin   ber   封装   art   get   lock   

原文地址:https://www.cnblogs.com/zqzhen/p/12764612.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!