标签:批量处理 多个 完成 没有 log 表头 顺序 底层实现 对象
跳跃表是有一种有序的数据结构,通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。
跳跃表支持平均O(logN)、最坏O(N)复杂度的节点查找,还可以通过顺序性操作来批量处理节点。大部分情况下,跳跃表的效率可以和平衡树媲美。
Redis使用跳跃表作为有序集合键的底层实现之一,党有序集合包含的元素数量较多,或者有序集合中元素的成员是比较长的字符串时,Redis就会使用跳跃表来作为有序集合键的底层实现。
包含zskiplistNode和zskiplist两个结构定义,其中前者结构用于跳跃表节点,后者结构用于保存跳跃表节点的相关信息,比如节点数,以及只想表头节点和表尾节点的指针等
上图最左边的就是zskiplist结构,该结构包含以下属性:
位于zskiplist结构右方的四个zskiplistNode结构,该结构包含一下属性:
注意:表头节点和其他节点的构造是一样的;表头节点也有后退指针、分值和成员对象,不过表头节点的这些属性不会被用到,所以图中省略了。
跳跃表节点由server.h\zskiplistNode结构定义
1、 层
跳跃表节点的level数组可以包含多个元素,每个元素都包含一个指向其他节点的指针,程序可以通这些层来加快访问其他节点的速度,一般来说,层数越多,访问其他节点的速度就越快。
每次创建一个新的跳跃表节点的时候,程序都根据幂次定律(power law,越大的数出现的概率越小)随机生成一个介于1和32之间的值作为level数组的大小,这个大小就是层的“高度”。下图就是带有不同层高的节点。
2、 前进指针
每个层都有一个指向表尾方向的前进指针,用于从表头向表尾方向访问节点。下图用虚线表示出了程序从表头向表尾方向,遍历跳跃表中所有节点的路径:
3、跨度
层的跨度用于记录两个节点之间的距离:
a 两个节点之间的跨度越大,他们相距得就越远。
b 指向null的所有前进指针的跨度都为0,因为他们没有连向任何节点。
初看上去,很容易以为跨度和遍历操作有关,但实际上并不是这样,遍历操作只使用前进指针就可以完成了,宽度实际上是用来计算排位(rank)的:在查找某个节点的过程中,将沿途访问过的所有层的跨度累计起来,得到的结果就是目标节点在跳跃表中的排位。
举个例子,下图用虚线标记了在跳跃表中查找分值为3.0、成员对象为o3的节点时,沿途经历的层:查找的过程只经过了一个层,并且层的跨度为3,所以目标节点在跳跃表中的排位为3。
再举个例子,下图用虚线标记了在跳跃表中查找分值为2.0、成员对象为o2的节点时,沿途经历的层:在查找节点的过程中,程序经过了两个跨度为1的节点,因此可以计算出,目标节点在跳跃表中的排位为2。
4、后退指针
节点的后退指针用于从表尾向表头方向访问节点:跟可以一次跳过多个节点的前进指针不同,因为每个节点只有一个后退指针,所以每次只能后退至前一个节点。
下图用虚线表示了如果从表尾向表头遍历跳跃表中的所有节点。
5、分值和成员
节点的分值(score属性)是一个double类型的浮点数,跳跃表中的所有节点都按照分值从小到大来排序。
节点的成员对象是一个指针,他指向一个字符串对象,而字符串对象则保存着一个SDS值。
在同一个跳跃表中,各个节点保存的成员对象必须是唯一的,但是多个节点保存的分值却可以是相同的:分值相同的节点按照成员对象在字典中的大小来进行排序,成员对象较小的节点会排在前面(靠近表头方向),而成员对象较大的节点则会排在后面(靠近表尾的方向)。
举个例子,在下图所示的跳跃表中,三个跳跃表节点都保存了相同的分值10086.0,但保存成员对象o1的节点却排在保存成员对象o2和o3的节点之前,由顺序可知,三个对象在字典中的排序哦o1<=o2<=o3。
紧靠多个跳跃表节点就可以组成一个跳跃表,如下图。
但通过使用一个zskiplist结构来持有这些节点,程序可以更方便地对整个跳跃表进行处理,比如快速访问跳跃表的表头节点和表尾节点,或者快速地获取跳跃表节点的数量等信息。
header和tail指针分别指向跳跃表的表头和表尾节点,通过这两个指针,程序定位表头及诶点和表尾节点的复杂度为O(1)。
通过使用length属性来记录节点的数量,程序可以在O(1)复杂度内返回跳跃表的长度。
level属性则用于在O(1)复杂度内获取跳跃表中层高最大的那个节点的层数量,注意表头节点的层高并不计算在内。
标签:批量处理 多个 完成 没有 log 表头 顺序 底层实现 对象
原文地址:https://www.cnblogs.com/wangb0402/p/12764826.html