标签:方法 static system n+1 问题: == 不同的 游戏 动态规划
问题:
学校联欢晚会的时候,为了使每一个同学都能参与进来,主持人常常会带着同学们玩击鼓传花的游戏。游戏规则是这样的:n个同学坐着围成一个圆圈,指定一个同学手里拿着一束花,主持人在旁边背对着大家开始击鼓,鼓声开始之后拿着花的同学开始传花,每个同学都可以把花传给自己左右的两个同学中的一个(左右任意),当主持人停止击鼓时,传花停止,此时,正拿着花没传出去的那个同学就要给大家表演一个节目。聪明的小赛提出一个有趣的问题:有多少种不同的方法可以使得从小赛手里开始传的花,传了m次以后,又回到小赛手里。对于传递的方法当且仅当这两种方法中,接到花的同学按接球顺序组成的序列是不同的,才视作两种传花的方法不同。比如有3个同学1号、2号、3号,并假设小赛为1号,花传了3次回到小赛手里的方式有1->2->3->1和1->3->2->1,共2种。
分析:实质就是动态规划的运用
(1)横轴记录传递的次数,纵轴记录位置。
(2)没传递一次,都需要更新每个位置可能获得球f的最大方式的数量。
(3)当前位置可以从左或右获得球,左右相加为当前位置的值。
(4)因为是逻辑上的循环,实际存储结构为数组,所以需要边界情况。
(5)初始化:
· 1、假设小赛在位置1 :(0,1) = 1
2、第一次传递只可能传给位置2或 n :(1,2)=1,(1,n) = 1.
3、其他部分默认初始化为0
code:
1 import java.util.Scanner; 2 3 public class Main38 { 4 public static void main(String[] args) { 5 6 Scanner s = new Scanner(System.in); 7 int n = s.nextInt(); 8 int m = s.nextInt(); 9 int dp[][] = new int [m+1][n+1]; //创建记录数组 10 dp[0][1]=1; 11 dp[1][n]=1; 12 dp[1][2]=1; 13 for(int i=1;i <= m;i++) { 14 for(int j=1;j <= n;j++) { 15 if(j == 1) 16 dp[i][j]=dp[i-1][n]+dp[i-1][2]; 17 else if(j==n) 18 dp[i][j]=dp[i-1][1]+dp[i-1][n-1]; 19 else 20 dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1]; 21 } 22 } 23 System.out.println(dp[m][1]); 24 s.close(); 25 } 26 }
标签:方法 static system n+1 问题: == 不同的 游戏 动态规划
原文地址:https://www.cnblogs.com/dream-flying/p/12800297.html