标签:方案 == 判断 put i+1 不能 统计 nlog 组合数
LINK:游戏
当L==1的时候 容易想到 答案和1的位置有关。
枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)!
考虑L==2的时候 对于一个排列什么时候会终止 容易发现是L~R中所有的质数 在这个排列中的最后一个位置的影响。
还是枚举这个质数的位置i 此时方案数为 C(i-1,s-1)s!(n-s)!
其中s为L~R之中所有的质数个数.
对于L>2 还是考虑先计算出s的个数 刚才是使用了线性筛 此时考虑 质数不能用了 那么可以考虑每个数是否为必要的数。
那么我们从前往后推 只需要知道离自己最近的数是谁 看一下上一个是不是就能判断当前了。
可以发现要除以一下自己的最小质因子。所以线性筛可以解决。
当然可以直接埃拉筛。统计没被筛到的数字个数即可。复杂度nloglogn
这里使用前者.
const int MAXN=10000010,maxn=110,G=3;
int fac[MAXN],inv[MAXN];
int v[MAXN],p[MAXN];
int L,R;
int cnt,top;
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;p=p>>1;
}
return cnt;
}
inline void prepare()
{
fac[0]=fac[1]=1;
rep(2,R,i)
{
fac[i]=(ll)fac[i-1]*i%mod;
if(!v[i])
{
v[i]=i;
p[++top]=i;
if(i>=L)++cnt;
}
rep(1,top,j)
{
if(p[j]>R/i)break;
int ww=i*p[j];
v[ww]=p[j];
if(i<L&&ww>=L)++cnt;
if(v[i]==p[j])break;
}
}
}
inline int C(int a,int b){if(a<b)return 0;return (ll)fac[a]*inv[b]%mod*inv[a-b]%mod;}
int main()
{
freopen("1.in","r",stdin);
get(L);get(R);
prepare();
if(L==1)put((ll)(1+R)*R/2%mod*fac[R-1]%mod);
else
{
inv[R]=ksm(fac[R],mod-2);
fep(R-1,0,i)inv[i]=(ll)inv[i+1]*(i+1)%mod;
int n=R-L+1;
int ans=0;
rep(cnt,n,i)ans=(ans+(ll)C(i-1,cnt-1)*fac[cnt]%mod*fac[n-cnt]%mod*i%mod)%mod;
put(ans);
}
return 0;
}
标签:方案 == 判断 put i+1 不能 统计 nlog 组合数
原文地址:https://www.cnblogs.com/chdy/p/12813985.html