码迷,mamicode.com
首页 > 其他好文 > 详细

常用激活函数

时间:2020-05-02 19:12:06      阅读:58      评论:0      收藏:0      [点我收藏+]

标签:针对   表达式   通过   设置   Alexnet   算法   学习   rac   开放   

  • Sigmoid

    Sigmoid 函数也叫 Logistic 函数,定义为

    \[Sigmoid:=\frac{1}{1+e^{-x}} \]

    它的一个优良特性就是能够把 ?? ∈ ?? 的输入压缩到 ??∈[0,1]区间,这个区间的数值在机器学习常用来表示以下含义:

    1. 概率分布 [0,1] 区间的输出和概率的分布范围契合,可以通过Sigmoid函数将输出转译为概率输出
    2. 信号强度 一般可以将 0~1理解为某种信号的强度,如像素的颜色强度,1代表当前通道颜色最强,0代表当前通道无颜色;抑或代表门控值(Gate)的强度,1代表当前门控全部开放,0代表门控关闭

    Sigmoid 函数连续可导,其函数图如下,相对于阶跃函数,可以直接利用梯度下降算法优化网络参数,应用广泛。

    技术图片

    阶跃函数:

    技术图片

    不足:在输入值较大或较小时,易出现梯度值接近于 0 的现象,称为梯度弥散现象,网络参数长时间得不到更新,很难训练较深层次的网络模型。

    在 TensorFlow 中,可以通过 tf.nn.sigmoid 实现 Sigmoid 函数

  • ReLU(Rectified Linear Unit,修正线性单元)

    ReLU 针对 sigmoid 的不足做出了改进。2012 年提出的 8 层 AlexNet 首次采用了 ReLU 作为激活函数,使得网络参数达到了 8 层。它的定义为:

    \[ReLU(x):=max(0,x) \]

    函数图如下:

    技术图片

    可以看到其对于小于 0 的值全部抑制为0,对于正数则直接输出,这种单边抑制来源于生物学。

    不足:ReLU 函数在 x < 0 时梯度值恒为 0 ,也可能会造成梯度弥散现象

    在 TensorFlow 中,可以通过 tf.nn.relu 实现 ReLU 函数

  • LeakyReLU

    为了克服 ReLU 的问题,提出了 LeakyReLU 函数,其表达式为:

    \[LeakyReLU=\begin{cases} x,x≥0\\ p*x, x<0\end{cases} \]

    其中 p 为用户自行设置的某较小数值的超参数,如 0.02 等。当 p = 0 时,LeakyReLU 函数退化为 ReLU 函数;当 p ≠ 0时,x < 0 能够获得较小的梯度值 p,从而避免出现梯度弥散现象。

    函数图如下:

    技术图片

    在 TensorFlow 中,可以通过 tf.nn.leaky_relu 实现 LeakyReLU 函数

  • Tanh

    Tanh 函数能够将 x ∈ R 的输入压缩到 [-1,1] 区间,定义为:

    \[tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}=2*sigmoid(2x)-1 \]

    可以看到 tanh 激活函数可通过 Sigmoid 函数缩放平移后实现,函数图如下:

    技术图片

    在 TensorFlow 中,可以通过 tf.nn.tanh 实现 tanh 函数

常用激活函数

标签:针对   表达式   通过   设置   Alexnet   算法   学习   rac   开放   

原文地址:https://www.cnblogs.com/alivinfer/p/12818917.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!