码迷,mamicode.com
首页 > 其他好文 > 详细

Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构

时间:2020-05-10 10:46:37      阅读:68      评论:0      收藏:0      [点我收藏+]

标签:预处理   enter   解耦   快速   生产   内存   reducer   ids   开源   

Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构

0x00 摘要

Alink 是阿里巴巴基于实时计算引擎 Flink 研发的新一代机器学习算法平台,是业界首个同时支持批式算法、流式算法的机器学习平台。本文是漫谈系列的第二篇,将从源码入手,带领大家具体剖析Alink设计思想和架构为何。

因为Alink的公开资料太少,所以均为自行揣测,肯定会有疏漏错误,希望大家指出,我会随时更新。

0x01 Alink设计原则

前文中 Alink漫谈(一) : 从KMeans算法实现看Alink设计思想 我们推测总结出Alink部分设计原则

  • 算法的归算法,Flink的归Flink,尽量屏蔽AI算法和Flink之间的联系。

  • 采用最简单,最常见的开发语言和思维方式。

  • 尽量借鉴市面上通用的机器学习设计思路和开发模式,让开发者无缝切换。

  • 构建一套战术打法(middleware或adapter),即屏蔽了Flink,又可以利用好Flink,还能让用户快速开发算法。

下面我们就针对这些设计原则,从上至下看看Alink如何设计自己这套战术打法。

为了能让大家更好理解,先整理一个概要图。因为Alink系统主要可以分成三个层面(顶层流水线, 中间层算法组件, 底层迭代计算框架),再加上一个Flink runtime,所以下图就是分别从这四个层面出发来看程序执行流程。

如何看待 pipeline.fit(data).transform(data).print();

// 从顶层流水线角度看
训练流水线  +-----> [VectorAssembler(Transformer)] -----> [KMeans(Estimator)]
          |      // KMeans.fit之后,会生成一个KMeansModel用来转换
          |      
转换流水线  +-----> [VectorAssembler(Transformer)] -----> [KMeansModel(Transformer)]


// 从中间层算法组件角度看    
训练算法组件 +-----> [MapBatchOp] -----> [KMeansTrainBatchOp]  
           |       // VectorAssemblerMapper in MapBatchOp 是业务逻辑
           |      
转换算法组件 +-----> [MapBatchOp] -----> [ModelMapBatchOp]
                   // VectorAssemblerMapper in MapBatchOp 是业务逻辑
                   // KMeansModelMapper in ModelMapBatchOp 是业务逻辑
 
  
// 从底层迭代计算框架角度看
训练by框架 +-----> [VectorAssemblerMapper] -----> [KMeansPreallocateCentroid / KMeansAssignCluster / AllReduce / KMeansUpdateCentroids in IterativeComQueue]   
          |       // 映射到Flink的各种算子进行训练
          |      
转换(直接) +-----> [VectorAssemblerMapper] -----> [KMeansModelMapper]    
                  // 映射到Flink的各种算子进行转换 
  
// 从Flink runtime角度看  
训练 +-----> map, mapPartiiton...
    |       // VectorAssemblerMapper.map等会被调用
    |      
转换 +-----> map, mapPartiiton...
            // 比如调用 KMeansModelMapper.map 来转换  

0x02 Alink实例代码

示例代码还是用之前的KMeans算法部分模块。

算法调用

public class KMeansExample {
	    public static void main(String[] args) throws Exception {
        ......

        BatchOperator data = new CsvSourceBatchOp().setFilePath(URL).setSchemaStr(SCHEMA_STR);

        VectorAssembler va = new VectorAssembler()
            .setSelectedCols(new String[]{"sepal_length", "sepal_width", "petal_length", "petal_width"})
            .setOutputCol("features");

        KMeans kMeans = new KMeans().setVectorCol("features").setK(3)
            .setPredictionCol("prediction_result")
            .setPredictionDetailCol("prediction_detail")
            .setReservedCols("category")
            .setMaxIter(100);

        Pipeline pipeline = new Pipeline().add(va).add(kMeans);
        pipeline.fit(data).transform(data).print();
    }
}

算法主函数

public final class KMeansTrainBatchOp extends BatchOperator <KMeansTrainBatchOp>
	implements KMeansTrainParams <KMeansTrainBatchOp> {

	static DataSet <Row> iterateICQ(...省略...) {

		return new IterativeComQueue()
			.initWithPartitionedData(TRAIN_DATA, data)
			.initWithBroadcastData(INIT_CENTROID, initCentroid)
			.initWithBroadcastData(KMEANS_STATISTICS, statistics)
			.add(new KMeansPreallocateCentroid())
			.add(new KMeansAssignCluster(distance))
			.add(new AllReduce(CENTROID_ALL_REDUCE))
			.add(new KMeansUpdateCentroids(distance))
			.setCompareCriterionOfNode0(new KMeansIterTermination(distance, tol))
			.closeWith(new KMeansOutputModel(distanceType, vectorColName, latitudeColName, longitudeColName))
			.setMaxIter(maxIter)
			.exec();
	}
}  

算法模块举例

基于点计数和坐标,计算新的聚类中心。

// Update the centroids based on the sum of points and point number belonging to the same cluster.
public class KMeansUpdateCentroids extends ComputeFunction {
    @Override
    public void calc(ComContext context) {

        Integer vectorSize = context.getObj(KMeansTrainBatchOp.VECTOR_SIZE);
        Integer k = context.getObj(KMeansTrainBatchOp.K);
        double[] sumMatrixData = context.getObj(KMeansTrainBatchOp.CENTROID_ALL_REDUCE);

        Tuple2<Integer, FastDistanceMatrixData> stepNumCentroids;
        if (context.getStepNo() % 2 == 0) {
            stepNumCentroids = context.getObj(KMeansTrainBatchOp.CENTROID2);
        } else {
            stepNumCentroids = context.getObj(KMeansTrainBatchOp.CENTROID1);
        }

        stepNumCentroids.f0 = context.getStepNo();
        context.putObj(KMeansTrainBatchOp.K,
            updateCentroids(stepNumCentroids.f1, k, vectorSize, sumMatrixData, distance));
    }
}

0x03 顶层 -- 流水线

本部分实现的设计原则是 :尽量借鉴市面上通用的设计思路和开发模式,让开发者无缝切换。

1. 机器学习重要概念

一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出。这非常类似于流水线式工作,即通常会包含源数据ETL(抽取、转化、加载),数据预处理,指标提取,模型训练与交叉验证,新数据预测等步骤。

先来说一下几个重要的概念:

  • Transformer:转换器,是一种可以将一个数据转换为另一个数据的算法。比如一个模型就是一个 Transformer。它可以把一个不包含转换标签的测试数据集 打上标签,转化成另一个包含转换标签的特征数据。Transformer可以理解为特征工程,即:特征标准化、特征正则化、特征离散化、特征平滑、onehot编码等。该类型有一个transform方法,用于fit数据之后,输入新的数据,进行特征变换。
  • Estimator:评估器,它是学习算法或在训练数据上的训练方法的概念抽象。所有的机器学习算法模型,都被称为估计器。在 Pipeline 里通常是被用来操作 数据并生产一个 Transformer。从技术上讲,Estimator实现了一个方法fit(),它接受一个特征数据并产生一个转换器。比如一个随机森林算法就是一个 Estimator,它可以调用fit(),通过训练特征数据而得到一个随机森林模型。
  • PipeLine:工作流或者管道。工作流将多个工作流阶段(转换器和估计器)连接在一起,形成机器学习的工作流,并获得结果输出。
  • Parameter:Parameter 被用来设置 Transformer 或者 Estimator 的参数。

2. Alink中概念实现

从 Alink的目录结构中 ,我们可以看出,Alink提供了这些常见概念(其中有些代码借鉴了Flink ML)。

./java/com/alibaba/alink:
common		operator	params		pipeline
  
./java/com/alibaba/alink/params:
associationrule	evaluation	nlp		regression	statistics
classification	feature		onlinelearning	shared		tuning
clustering	io		outlier		similarity	udf
dataproc	mapper		recommendation	sql		validators

./java/com/alibaba/alink/pipeline:
EstimatorBase.java	ModelBase.java		Trainer.java		feature
LocalPredictable.java	ModelExporterUtils.java	TransformerBase.java	nlp
LocalPredictor.java	Pipeline.java		classification		recommendation
MapModel.java		PipelineModel.java	clustering		regression
MapTransformer.java	PipelineStageBase.java	dataproc		tuning

比较基础的是三个接口:PipelineStages,Transformer,Estimator,分别恰好对应了机器学习的两个通用概念 :转换器 ,评估器。PipelineStages是这两个的基础接口。

// Base class for a stage in a pipeline. The interface is only a concept, and does not have any actual functionality. Its subclasses must be either Estimator or Transformer. No other classes should inherit this interface directly.
public interface PipelineStage<T extends PipelineStage<T>> extends WithParams<T>, Serializable 

// A transformer is a PipelineStage that transforms an input Table to a result Table.
public interface Transformer<T extends Transformer<T>> extends PipelineStage<T> 
 
// Estimators are PipelineStages responsible for training and generating machine learning models.
public interface Estimator<E extends Estimator<E, M>, M extends Model<M>> extends PipelineStage<E>

其次是三个抽象类定义:PipelineStageBase,EstimatorBase,TransformerBase,分别就对应了以上的三个接口。其中定义了一些基础操作,比如 fit,transform。

// The base class for a stage in a pipeline, either an EstimatorBase or a TransformerBase.
public abstract class PipelineStageBase<S extends PipelineStageBase<S>>
    implements WithParams<S>, HasMLEnvironmentId<S>, Cloneable 
  
// The base class for estimator implementations.
public abstract class EstimatorBase<E extends EstimatorBase<E, M>, M extends ModelBase<M>>
    extends PipelineStageBase<E> implements Estimator<E, M>   
  
// The base class for transformer implementations.
public abstract class TransformerBase<T extends TransformerBase<T>>
    extends PipelineStageBase<T> implements Transformer<T>  

然后是Pipeline基础类,这个类就可以把Transformer,Estimator联系起来 。

// A pipeline is a linear workflow which chains EstimatorBases and TransformerBases to execute an algorithm 
public class Pipeline extends EstimatorBase<Pipeline, PipelineModel> {
	private ArrayList<PipelineStageBase> stages = new ArrayList<>();
  
  	public Pipeline add(PipelineStageBase stage) {
		this.stages.add(stage);
		return this;
	}
}

最后是 Parameter 概念相关举例,比如实例中用到的 VectorAssemblerParams。

// Parameters for MISOMapper.
public interface MISOMapperParams<T> extends HasSelectedCols <T>,  HasOutputCol <T>,
	HasReservedCols <T> {}

// parameters of vector assembler.
public interface VectorAssemblerParams<T> extends MISOMapperParams<T> {
ParamInfo <String> HANDLE_INVALID = ParamInfoFactory
		.createParamInfo("handleInvalid", String.class)
		.setDescription("parameter for how to handle invalid data (NULL values)")
		.setHasDefaultValue("error")
		.build();
}

3. 结合实例看流水线

首先是一些基础抽象类,比如:

  • MapTransformer是 flat map 的Transformer。
  • ModelBase是模型定义,也是一个Transformer。
  • Trainer是训练模型定义,是EstimatorBase。
// Abstract class for a flat map TransformerBase. 
public abstract class MapTransformer<T extends MapTransformer <T>>
		extends TransformerBase<T> implements LocalPredictable {  

// The base class for a machine learning model.
public abstract class ModelBase<M extends ModelBase<M>> extends TransformerBase<M>
    implements Model<M> 

// Abstract class for a trainer that train a machine learning model.
public abstract class Trainer<T extends Trainer <T, M>, M extends ModelBase<M>>
	extends EstimatorBase<T, M> 

然后就是我们实例用到的两个类型定义。

  • KMeans 是一个Trainer,其实现了EstimatorBase;
  • VectorAssembler 是一个TransformerBase。
// 这是一个 EstimatorBase 类型
public class KMeans extends Trainer <KMeans, KMeansModel> implements
	KMeansTrainParams <KMeans>, KMeansPredictParams <KMeans> {
	@Override
	protected BatchOperator train(BatchOperator in) {
		return new KMeansTrainBatchOp(this.getParams()).linkFrom(in);
	}
}

// 这是一个 TransformerBase 类型
public class VectorAssembler extends MapTransformer<VectorAssembler>
	implements VectorAssemblerParams <VectorAssembler> {
	public VectorAssembler(Params params) {
		super(VectorAssemblerMapper::new, params);
	}
}

实例中,分别构建了两个流水线阶段,然后这两个实例就被链接到流水线上。

VectorAssembler va = new VectorAssembler()
KMeans kMeans = new KMeans()  
Pipeline pipeline = new Pipeline().add(va).add(kMeans);

// 能看出来,流水线上有两个阶段,分别是VectorAssembler和KMeans。

pipeline = {Pipeline@1201} 
 stages = {ArrayList@2853}  size = 2
   
  0 = {VectorAssembler@1199} 
   mapperBuilder = {VectorAssembler$lambda@2859} 
   params = {Params@2860} "Params {outputCol="features", selectedCols=["sepal_length","sepal_width","petal_length","petal_width"]}"
     
  1 = {KMeans@1200} 
   params = {Params@2857} "Params {vectorCol="features", maxIter=100, reservedCols=["category"], k=3, predictionCol="prediction_result", predictionDetailCol="prediction_detail"}"

0x04 中间层 -- 算法组件

算法组件是中间层的概念,可以认为是真正实现算法的模块/层次。主要作用是承上启下。

  • 其上层是流水线各个阶段,流水线的生成结果就是一个算法组件。算法组件的作用是把流水线的Estimator或者Transformer翻译成具体算法。算法组件彼此是通过 linkFrom 串联在一起
  • 其下层是"迭代计算框架",算法组件把具体算法逻辑中的计算/通信分成一个个小模块,映射到Mapper Function 或者具体"迭代计算框架"的计算/通信 Function 上,这样才能更好的利用Flink的各种优势。
  • "迭代计算框架" 中,主要两个部分是 Mapper Function 和 计算/通信 Function,其在代码中分别对应Mapper,ComQueueItem。
  • Mapper Function 是映射Function(系统写好了部分Mapper,用户也可以根据算法来写自己的Mapper);
  • 计算/通信 Function是专门为算法写的专用Function(也分成 系统内置的,算法自定义的)。
  • 可以这么理解:各种Function是业务逻辑(组件)。算法组件只是提供运行规则,业务逻辑(组件)作为运行在算法组件上的插件。
  • 也可以这么理解 :算法组件就是框架,其把部分业务逻辑委托给Mapper或者ComQueueItem。

比如

  • KMeans 是 Estimator,其对应算法组件是 KMeansTrainBatchOp。其业务逻辑(组件)也在这个类中,是由IterativeComQueue为基础串联起来的一系列算法类(ComQueueItem)。
  • VectorAssembler 是 Transformer,其对应算法组件是 MapBatchOp。其业务逻辑(组件)是VectorAssemblerMapper(其 map 函数会做业务逻辑,把将多个数值列按顺序汇总成一个向量列)。
public final class KMeansTrainBatchOp extends BatchOperator <KMeansTrainBatchOp>   implements KMeansTrainParams <KMeansTrainBatchOp> 
    
// class for a flat map BatchOperator.
public class MapBatchOp<T extends MapBatchOp<T>> extends BatchOperator<T> 

无论是调用Estimator.fit 还是 Transformer.transform,其本质都是通过linkFrom函数,把各个Operator联系起来,这样就把数据流串联起来。然后就可以逐步映射到Flink具体运行计划上

1. Algorithm operators

AlgoOperator是算子组件的基类,其子类有BatchOperator和StreamOperator,分别对应了批处理和流处理。

// Base class for algorithm operators.
public abstract class AlgoOperator<T extends AlgoOperator<T>>
    implements WithParams<T>, HasMLEnvironmentId<T>, Serializable 

// Base class of batch algorithm operators.
public abstract class BatchOperator<T extends BatchOperator <T>> extends AlgoOperator <T> {
    // Link this object to BatchOperator using the BatchOperators as its input.
  	public abstract T linkFrom(BatchOperator <?>... inputs);
  
    public <B extends BatchOperator <?>> B linkTo(B next) {
      return link(next);
    }
    public BatchOperator print() throws Exception {
      return linkTo(new PrintBatchOp().setMLEnvironmentId(getMLEnvironmentId()));
    }  
}

public abstract class StreamOperator<T extends StreamOperator <T>> extends AlgoOperator <T>

示例代码如下:

// 输入csv文件被转化为一个BatchOperator
BatchOperator data = new CsvSourceBatchOp().setFilePath(URL).setSchemaStr(SCHEMA_STR);

...

pipeline.fit(data).transform(data).print();

2. Mapper(提前说明)

Mapper是底层迭代计算框架的一部分,是业务逻辑(组件)。从目录结构能看出。这里提前说明,是因为在流水线讲解过程中大量涉及,所以就提前放在这里说明

./java/com/alibaba/alink/common
linalg mapper model comqueue utils io

Mapper的几个主要类定义如下,其作用广泛,即可以映射输入到输出,也可以映射模型到具体数值

// Abstract class for mappers.
public abstract class Mapper implements Serializable {}

// Abstract class for mappers with model.
public abstract class ModelMapper extends Mapper {}

// Find  the closest cluster center for every point.
public class KMeansModelMapper extends ModelMapper {}

// Mapper with Multi-Input columns and Single Output column(MISO).
public abstract class MISOMapper extends Mapper {}

// This mapper maps many columns to one vector. the columns should be vector or numerical columns.
public class VectorAssemblerMapper extends MISOMapper {}

Mapper的业务逻辑依赖于算法组件来运作,比如 [ VectorAssemblerMapper in MapBatchOp ] ,[ KMeansModelMapper in ModelMapBatchOp ]。

ModelMapper具体运行则需要依赖 ModelMapperAdapter 来和Flink runtime联系起来。ModelMapperAdapter继承了RichMapFunction,ModelMapper作为其成员变量,在map操作中执行业务逻辑,ModelSource则是数据来源

对应本实例,KMeansModelMapper 就是最后转换的 BatchOperator,其map函数用来转换

3. 系统内置算法组件

系统内置了一些常用的算法组件,比如:

  • MapBatchOp 功能是基于输入来flat map,是 VectorAssembler 返回的算法组件。
  • ModelMapBatchOp 功能是基于模型进行flat map,是 KMeans 返回的算法组件。

以 ModelMapBatchOp 为例给大家说明其作用,从下面代码注释中可以看出,linkFrom作用是:

  • 把inputs"算法组件" 和 本身"算法组件" 联系起来,这就形成了一个算法逻辑链
  • 把业务逻辑映射成 "Flink算子",这就形成了一个 "Flink算子链"
public class ModelMapBatchOp<T extends ModelMapBatchOp<T>> extends BatchOperator<T> {
	@Override
	public T linkFrom(BatchOperator<?>... inputs) {
		checkOpSize(2, inputs);

		try {
			BroadcastVariableModelSource modelSource = new BroadcastVariableModelSource(BROADCAST_MODEL_TABLE_NAME);
      // mapper是映射函数
			ModelMapper mapper = this.mapperBuilder.apply(
					inputs[0].getSchema(),
					inputs[1].getSchema(),
					this.getParams());
      // modelRows 是模型
			DataSet<Row> modelRows = inputs[0].getDataSet().rebalance();
      // resultRows 是输入数据的映射变化
			DataSet<Row> resultRows = inputs[1].getDataSet()
					.map(new ModelMapperAdapter(mapper, modelSource))
           // 把模型作为广播变量,后续会在 ModelMapperAdapter 中使用
					.withBroadcastSet(modelRows, BROADCAST_MODEL_TABLE_NAME);

			TableSchema outputSchema = mapper.getOutputSchema();
			this.setOutput(resultRows, outputSchema);
			return (T) this;
		} catch (Exception ex) {
			throw new RuntimeException(ex);
		}
	}
}	

ModelMapperAdapter

ModelMapperAdapter 是适配器的实现,用来在flink上运行业务逻辑Mapper。从代码可以看出,ModelMapperAdapter取出之前存储的mapper和模型数据,然后基于此来进行具体算法业务。

/**
 * Adapt a {@link ModelMapper} to run within flink.

 * This adapter class hold the target {@link ModelMapper} and it‘s {@link ModelSource}. Upon open(), it will load model rows from {@link ModelSource} into {@link ModelMapper}.
 */
public class ModelMapperAdapter extends RichMapFunction<Row, Row> implements Serializable {

    /**
     * The ModelMapper to adapt.
     */
    private final ModelMapper mapper;

    /**
     * Load model data from ModelSource when open().
     */
    private final ModelSource modelSource;

    public ModelMapperAdapter(ModelMapper mapper, ModelSource modelSource) {
        // mapper是业务逻辑,modelSource是模型Broadcast source
        this.mapper = mapper; // 在map操作中执行业务逻辑
        this.modelSource = modelSource; // 数据来源
    }

    @Override
    public void open(Configuration parameters) throws Exception {
        // 从广播变量中获取模型数据
        List<Row> modelRows = this.modelSource.getModelRows(getRuntimeContext());
        this.mapper.loadModel(modelRows);
    }

    @Override
    public Row map(Row row) throws Exception {
        // 执行业务逻辑,在数据来源上转换
        return this.mapper.map(row);
    }
}

4. 训练阶段fit

pipeline.fit(data) 之中,会沿着流水线依次执行。如果流水线下一个阶段遇到了是Transformer,就调用其transform;如果遇到的是EstimatorBase,就先调用其fit,把EstimatorBase转换为Transformer,然后再次调用这个转换出来的Transformer.transform。就这样一个一个阶段执行。

4.1 具体流水线处理

  1. 如果流水线下一阶段遇到EstimatorBase,会处理EstimatorBase的fit,把流水线上的Estimator转换为 TransformerBase。Estimator.fit 接受一个特征数据并产生一个转换器。

    如果这个阶段 不是 流水线最后一个阶段)会对这个 TransformerBase继续处理。处理之后才能进入到流水线下一阶段。

    如果这个阶段 是 流水线最后一个阶段)不会对这个 TransformerBase 做处理,直接结束流水线 fit 操作。

  2. 如果流水线下一阶段遇到TransformerBase,就直接调用其transform函数。

  3. 对于所有需要处理的TransformerBase,无论是从EstimatorBase转换出来的,还是Pipeline原有的 ,都调用其transform函数,转换其input。input = transformers[i].transform(input); 。这样每次转换后的输出再次赋值给input,作为流水线下一阶段的输入。

  4. 最后得到一个PipelineModel (其本身也是一个Transformer) ,这个属于下一阶段转换流水线

4.2 结合本实例概述

本实例有两个stage。VectorAssembler是Transformer,KMeans是EstimatorBase。

这时候Pipeline其内部变量是:

this = {Pipeline@1195} 
 stages = {ArrayList@2851}  size = 2
     
  0 = {VectorAssembler@1198} 
   mapperBuilder = {VectorAssembler$lambda@2857} 
   params = {Params@2858} "Params {outputCol="features", selectedCols=["sepal_length","sepal_width","petal_length","petal_width"]}"
       
  1 = {KMeans@2856} 
   params = {Params@2860} "Params {vectorCol="features", maxIter=100, reservedCols=["category"], k=3, predictionCol="prediction_result", predictionDetailCol="prediction_detail"}"
    params = {HashMap@2862}  size = 6
  • Pipeline 先调用Transformer类型的VectorAssembler,来处理其input (就是csv的BatchOperator)。这个处理csv是通过linkFrom(input)来构建的。处理之后再包装成一个MapBatchOp返回赋值给input。
  • 其次调用EstimatorBase类型的Kmeans.fit函数,对input (就是 VectorAssembler 返回的MapBatchOp) 进行fit。fit过程中调用了KMeansTrainBatchOp.linkFrom来设置,fit生成了一个KMeansModel (Transformer)。因为这时候已经是流水线最后一步,所以不做后续的KMeansModel.transform操作。KMeansModel 就是训练出来的判断模型
  • 在上述调用过程中,会在transformers数组中记录运算过的TransformerBase和EstimatorBase适配出来的Transformer。
  • 最后以这个transformers数组为参数,生成一个 PipelineModel (其也是一个Transformer类型)。生成 PipelineModel 的目的是:PipelineModel是后续转换中的新流水线

PipelineMode 的新流水线处理流程是:从 csv 读入/ 映射(VectorAssembler 处理),然后 KMeansModel 做转换(下一节会具体介绍)。

fit 具体代码是

public class Pipeline extends EstimatorBase<Pipeline, PipelineModel> {
  
    // Train the pipeline with batch data.
  	public PipelineModel fit(BatchOperator input) {
      
      int lastEstimatorIdx = getIndexOfLastEstimator();
      TransformerBase[] transformers = new TransformerBase[stages.size()];
      for (int i = 0; i < stages.size(); i++) {
        PipelineStageBase stage = stages.get(i);
        if (i <= lastEstimatorIdx) {
          if (stage instanceof EstimatorBase) {
            // 这里会把流水线上的具体 Algorithm operators 通过 linkFrom 函数串联起来。
            transformers[i] = ((EstimatorBase) stage).fit(input); 
          } else if (stage instanceof TransformerBase) {
            transformers[i] = (TransformerBase) stage;
          }
          // 注意,如果是流水线最后一个阶段,则不做transform处理。
          if (i < lastEstimatorIdx) {
            // 这里会调用到具体Transformer的transform函数,其会把流水线上的具体 Algorithm operators 通过 linkFrom 函数串联起来。
            input = transformers[i].transform(input);
          }
        } else {
          transformers[i] = (TransformerBase) stage;
        }
      }
      // 这里生成了一个PipelineModel,transformers会作为参数传给他
      return new PipelineModel(transformers).setMLEnvironmentId(input.getMLEnvironmentId());   
    }
}

// MapTransformer是VectorAssembler的基类。transform会生成一个MapBatchOp,然后再调用MapBatchOp.linkFrom。
public abstract class MapTransformer<T extends MapTransformer <T>>
		extends TransformerBase<T> implements LocalPredictable {
	@Override
	public BatchOperator transform(BatchOperator input) {
		return new MapBatchOp(this.mapperBuilder, this.params).linkFrom(input);
	}
}

// Trainer是KMeans的基类。
public abstract class Trainer<T extends Trainer <T, M>, M extends ModelBase<M>>
	@Override
	public M fit(BatchOperator input) {
    // KMeans.train 会调用 KMeansTrainBatchOp(this.getParams()).linkFrom(in);
    // createModel会生成一个新的model,本示例中是 com.alibaba.alink.pipeline.clustering.KMeansModel
  		return createModel(train(input).getOutputTable()); 
	}
}

下面会逐一论述这两个环节。

4.3 VectorAssembler.transform

这部分作用是把csv数据转化为KMeans训练所需要的数据类型。

VectorAssembler.transform会调用到MapBatchOp.linkFrom。linkFrom首先把 csv input 进行了转换,变成DataSet,然后以此为参数生成一个MapBatchOp返回,这个返回的 MapBatchOp。其业务逻辑是在 VectorAssemblerMapper 中实现的(将多个数值列按顺序汇总成一个向量列)。

public class MapBatchOp<T extends MapBatchOp<T>> extends BatchOperator<T> {
    public T linkFrom(BatchOperator<?>... inputs) {
        BatchOperator in = checkAndGetFirst(inputs);

        try {
            Mapper mapper = (Mapper)this.mapperBuilder.apply(in.getSchema(), this.getParams());
            // 这里对csv输入进行了map,这里只是生成逻辑执行计划,具体操作会在print之后才做的。
            DataSet<Row> resultRows = in.getDataSet().map(new MapperAdapter(mapper));
            TableSchema resultSchema = mapper.getOutputSchema();
            this.setOutput(resultRows, resultSchema);
            return this;
        } catch (Exception var6) {
            throw new RuntimeException(var6);
        }
    }    
}

// MapBatchOp本身
this = {MapBatchOp@3748} "UnnamedTable$1"
 mapperBuilder = {VectorAssembler$lambda@3744} 
 params = {Params@3754} "Params {outputCol="features", selectedCols=["sepal_length","sepal_width","petal_length","petal_width"]}"
 output = {TableImpl@5862} "UnnamedTable$1"
 sideOutputs = null
     
// mapper就是业务逻辑模块
mapper = {VectorAssemblerMapper@5785} 
 handleInvalid = {VectorAssemblerMapper$HandleType@5813} "ERROR"
 outputColsHelper = {OutputColsHelper@5814} 
 colIndices = {int[4]@5815} 
 dataFieldNames = {String[5]@5816} 
 dataFieldTypes = {DataType[5]@5817} 
 params = {Params@5818} "Params {outputCol="features", selectedCols=["sepal_length","sepal_width","petal_length","petal_width"]}"
     
// 返回数值如下
resultRows = {MapOperator@5788} 
 function = {MapperAdapter@5826} 
  mapper = {VectorAssemblerMapper@5785} 
 defaultName = "linkFrom(MapBatchOp.java:35)"      
     
// 调用栈如下

linkFrom:31, MapBatchOp (com.alibaba.alink.operator.batch.utils)
transform:34, MapTransformer (com.alibaba.alink.pipeline)
fit:122, Pipeline (com.alibaba.alink.pipeline)
main:31, KMeansExample (com.alibaba.alink)

4.4 KMeans.fit

这部分就是训练模型

KMeans是一个Trainer,其进而实现了EstimatorBase类型,所以流水线就调用到了其fit函数

KMeans.fit就是调用了Trainer.fit。

  • Trainer.fit首先调用train函数,最终调用KMeansTrainBatchOp.linkFrom,这样就和VectorAssembler串联起来。KMeansTrainBatchOp 把VectorAssembler返回的 MapBatchOp进行处理。最后返回一个同样类型KMeansTrainBatchOp。
  • Trainer.fit其次调用Trainer.createModel,该函数会根据this的类型决定应该生成什么Model。对于 KMeans,就生成了KMeansModel。

因为KMeans是流水线最后一个阶段,这时候不调用 input = transformers[i].transform(input); 所以目前还是训练,生成一个模型 KMeansModel。

// 实际部分代码    

Trainer.fit(BatchOperator input) {
		return createModel(train(input).getOutputTable());
}
  
public final class KMeansTrainBatchOp extends BatchOperator <KMeansTrainBatchOp>
	implements KMeansTrainParams <KMeansTrainBatchOp> {	
    
    	public KMeansTrainBatchOp linkFrom(BatchOperator <?>... inputs) {
            DataSet <Row> finalCentroid = iterateICQ(initCentroid, data,
                vectorSize, maxIter, tol, distance, distanceType, vectorColName, null, null);
            this.setOutput(finalCentroid, new KMeansModelDataConverter().getModelSchema());
            return this;            
        }
}

// 变量内容
			
this = {KMeansTrainBatchOp@5887} 
 params = {Params@5895} "Params {vectorCol="features", maxIter=100, reservedCols=["category"], k=3, predictionCol="prediction_result", predictionDetailCol="prediction_detail"}"
 output = null
 sideOutputs = null
inputs = {BatchOperator[1]@5888} 
 0 = {MapBatchOp@3748} "UnnamedTable$1"
  mapperBuilder = {VectorAssembler$lambda@3744} 
  params = {Params@3754} "Params {outputCol="features", selectedCols=["sepal_length","sepal_width","petal_length","petal_width"]}"
  output = {TableImpl@5862} "UnnamedTable$1"
  sideOutputs = null			
			
// 调用栈如下			
			
linkFrom:84, KMeansTrainBatchOp (com.alibaba.alink.operator.batch.clustering)
train:31, KMeans (com.alibaba.alink.pipeline.clustering)
fit:34, Trainer (com.alibaba.alink.pipeline)
fit:117, Pipeline (com.alibaba.alink.pipeline)
main:31, KMeansExample (com.alibaba.alink)			

KMeansTrainBatchOp.linkFrom是算法重点。这里其实就是生成了算法所需要的一切前提,把各种Flink算子搭建好。后续会再提到。

fit函数生成了 KMeansModel,其transform函数在基类MapModel中实现,会在下一个transform阶段完成调用。这个就是训练出来的KMeans模型,其也是一个Transformer。

// Find  the closest cluster center for every point.
public class KMeansModel extends MapModel<KMeansModel>
	implements KMeansPredictParams <KMeansModel> {

	public KMeansModel(Params params) {
		super(KMeansModelMapper::new, params);
	}
}

4.5 生成新的转换流水线

前面说到了,Pipeline的fit函数,返回一个PipelineModel。这个PipelineModel在后续会继续调用transform,完成转换阶段。

return new PipelineModel(transformers).setMLEnvironmentId(input.getMLEnvironmentId());

5. 转换阶段transform

转换阶段的流水线,依然要从VectorAssembler入手来读取csv,进行map处理。然后调用 KMeansModel。

PipelineModel会继续调用transform函数。其作用是把Transformer转化为BatchOperator。这时候其内部变量如下,看出来已经从最初流水线各种类型参杂 转换为 统一transform实例。

this = {PipelineModel@5016} 
 transformers = {TransformerBase[2]@5017} 

  0 = {VectorAssembler@1198} 
   mapperBuilder = {VectorAssembler$lambda@2855} 
   params = {Params@2856} "Params {outputCol="features", selectedCols=["sepal_length","sepal_width","petal_length","petal_width"]}"
     
  1 = {KMeansModel@5009} 
   mapperBuilder = {KMeansModel$lambda@5011} 
   modelData = {TableImpl@4984} "UnnamedTable$2"
   params = {Params@5012} "Params {vectorCol="features", maxIter=100, reservedCols=["category"], k=3, predictionCol="prediction_result", predictionDetailCol="prediction_detail"}"
 modelData = null
 params = {Params@5018} "Params {MLEnvironmentId=0}"
  • 第一次transform调用到了MapBatchOp.linkFrom,就是VectorAssembler.transform调用到的,其作用和 在 fit 流水线中起到的作用一样,下面注释中有解释。

  • 第二次transform调用到了ModelMapBatchOp.linkFrom,就是KMeansModel.transform间接调用到的。下面注释中有解释。

这两次 transform 的调用生成了 BatchOperator 的串联。最终返回结果是 ModelMapBatchOp,即一个BatchOperator。转换将由ModelMapBatchOp来转换。

// The model fitted by Pipeline.
public class PipelineModel extends ModelBase<PipelineModel> implements LocalPredictable {
    @Override
    public BatchOperator<?> transform(BatchOperator input) {
        for (TransformerBase transformer : this.transformers) {
            input = transformer.transform(input);
        }
        return input;
    }  
}
   
// 经过变化后,得到一个最终的转化结果 BatchOperator,以此来转换
// {KMeansModel$lambda@5050} 就是 KMeansModelMapper,转换逻辑。

input = {ModelMapBatchOp@5047} "UnnamedTable$3"
 mapperBuilder = {KMeansModel$lambda@5050} 
 params = {Params@5051} "Params {vectorCol="features", maxIter=100, reservedCols=["category"], k=3, predictionCol="prediction_result", predictionDetailCol="prediction_detail"}"
  params = {HashMap@5058}  size = 6
   "vectorCol" -> ""features""
   "maxIter" -> "100"
   "reservedCols" -> "["category"]"
   "k" -> "3"
   "predictionCol" -> ""prediction_result""
   "predictionDetailCol" -> ""prediction_detail""
 output = {TableImpl@5052} "UnnamedTable$3"
  tableEnvironment = {BatchTableEnvironmentImpl@5054} 
  operationTree = {DataSetQueryOperation@5055} 
  operationTreeBuilder = {OperationTreeBuilder@5056} 
  lookupResolver = {LookupCallResolver@5057} 
  tableName = "UnnamedTable$3"
 sideOutputs = null
    
// MapTransformer是VectorAssembler的基类。transform会生成一个MapBatchOp,然后再调用MapBatchOp.linkFrom。
public abstract class MapTransformer<T extends MapTransformer <T>>
		extends TransformerBase<T> implements LocalPredictable {
	@Override
	public BatchOperator transform(BatchOperator input) {
		return new MapBatchOp(this.mapperBuilder, this.params).linkFrom(input);
	}  
}
    
// MapModel是KMeansModel的基类,transform会生成一个ModelMapBatchOp,然后再调用ModelMapBatchOp.linkFrom。
public abstract class MapModel<T extends MapModel<T>>
		extends ModelBase<T> implements LocalPredictable {
	@Override
	public BatchOperator transform(BatchOperator input) {
		return new ModelMapBatchOp(this.mapperBuilder, this.params)
				.linkFrom(BatchOperator.fromTable(this.getModelData())
					.setMLEnvironmentId(input.getMLEnvironmentId()), input);
	}
}  

在这两个linkFrom中,还是分别生成了两个MapOperator,然后拼接起来,构成了一个 BatchOperator 串。从上面代码中可以看出,KMeansModel对应的ModelMapBatchOp,其linkFrom会返回一个ModelMapperAdapter。ModelMapperAdapter是一个RichMapFunction类型,它会把KMeansModelMapper作为RichMapFunction.function成员变量保存起来。然后会调用 .map(new ModelMapperAdapter(mapper, modelSource)),map就是Flink算子,这样转换算法就和Flink联系起来了

最后 Keans 算法的转换工作是通过 KMeansModelMapper.map 来完成的

6. 运行

我们都知道,Flink程序中,为了让程序运行,需要

  • 获取execution environment : 调用类似 getExecutionEnvironment() 来获取environment;
  • 触发程序执行 : 调用类似 env.execute("KMeans Example"); 来真正执行。

Alink其实就是一个Flink应用,只不过要比普通Flink应用复杂太多。

但是从实例代码中,我们没有看到类似调用。这说明Alink封装的非常好,但是作为好奇的程序员,我们需要知道究竟这些调用隐藏在哪里。

获取执行环境

Alink是在Pipeline执行的时候,获取到运行环境。具体来说,因为csv文件是最初的输入,所以当transform调用其 in.getSchema() 时候,会获取运行环境。

public final class CsvSourceBatchOp extends BaseSourceBatchOp<CsvSourceBatchOp>
    implements CsvSourceParams<CsvSourceBatchOp> {
    @Override
    public Table initializeDataSource() {
      ExecutionEnvironment execEnv = MLEnvironmentFactory.get(getMLEnvironmentId()).getExecutionEnvironment();
    }
}

initializeDataSource:77, CsvSourceBatchOp (com.alibaba.alink.operator.batch.source)
getOutputTable:52, BaseSourceBatchOp (com.alibaba.alink.operator.batch.source)
getSchema:180, AlgoOperator (com.alibaba.alink.operator)
linkFrom:34, MapBatchOp (com.alibaba.alink.operator.batch.utils)
transform:34, MapTransformer (com.alibaba.alink.pipeline)
fit:122, Pipeline (com.alibaba.alink.pipeline)
main:31, KMeansExample (com.alibaba.alink)

触发程序运行

截止到现在,Alink已经做了很多东西,也映射到了 Flink算子上,那么究竟什么地方才真正和Flink联系起来呢?

print 调用的是BatchOperator.print,真正从这里开始,会一层一层调用下去,最后来到

package com.alibaba.alink.operator.batch.utils;

public class PrintBatchOp extends BaseSinkBatchOp<PrintBatchOp> {
	@Override
	protected PrintBatchOp sinkFrom(BatchOperator in) {
		this.setOutputTable(in.getOutputTable());
		if (null != this.getOutputTable()) {
			try {
                // 在这个 collect 之后,会进入到 Flink 的runtime之中。
				List <Row> rows = DataSetConversionUtil.fromTable(getMLEnvironmentId(), this.getOutputTable()).collect();
				batchPrintStream.println(TableUtil.formatTitle(this.getColNames()));
				for (Row row : rows) {
					batchPrintStream.println(TableUtil.formatRows(row));
				}
			} catch (Exception ex) {
				throw new RuntimeException(ex);
			}
		}
		return this;
	}    
}

在 LocalEnvironment 这里把Alink和Flink的运行环境联系起来。

public class LocalEnvironment extends ExecutionEnvironment {
	@Override
	public String getExecutionPlan() throws Exception {
		Plan p = createProgramPlan(null, false);
        
        // 下面会真正的和Flink联系起来。
		if (executor != null) {
			return executor.getOptimizerPlanAsJSON(p);
		}
		else {
			PlanExecutor tempExecutor = PlanExecutor.createLocalExecutor(configuration);
			return tempExecutor.getOptimizerPlanAsJSON(p);
		}
	}    
}

// 调用栈如下

execute:91, LocalEnvironment (org.apache.flink.api.java)
execute:820, ExecutionEnvironment (org.apache.flink.api.java)
collect:413, DataSet (org.apache.flink.api.java)
sinkFrom:40, PrintBatchOp (com.alibaba.alink.operator.batch.utils)
sinkFrom:18, PrintBatchOp (com.alibaba.alink.operator.batch.utils)
linkFrom:31, BaseSinkBatchOp (com.alibaba.alink.operator.batch.sink)
linkFrom:17, BaseSinkBatchOp (com.alibaba.alink.operator.batch.sink)
link:89, BatchOperator (com.alibaba.alink.operator.batch)
linkTo:239, BatchOperator (com.alibaba.alink.operator.batch)
print:337, BatchOperator (com.alibaba.alink.operator.batch)
main:31, KMeansExample (com.alibaba.alink)

0x05 底层--迭代计算框架

这里对应如下设计原则:

  • 构建一套战术打法(middleware或者adapter),即屏蔽了Flink,又可以利用好Flink,还可以让用户基于此可以快速开发算法
  • 采用最简单,最常见的开发语言和开发模式。

让我们想想看,大概有哪些基础工作需要做:

  • 如何初始化
  • 如何通信
  • 如何分割代码,如何广播代码
  • 如何分割数据,如何广播数据
  • 如何迭代算法

其中最重要的概念是IterativeComQueue,这是把通信或者计算抽象成ComQueueItem,然后把ComQueueItem串联起来形成队列。这样就形成了面向迭代计算场景的一套迭代通信计算框架。

再次把目录结构列在这里:

./java/com/alibaba/alink/common:
MLEnvironment.java		linalg MLEnvironmentFactory.java	mapper
VectorTypes.java		model comqueue			utils io

里面大致有 :

  • Flink 封装模块 :MLEnvironment.java, MLEnvironmentFactory.java。
  • 线性代数模块:linalg。
  • 计算/通讯队列模块:comqueue,其中ComputeFunction进行计算,比如训练算法。
  • 映射模块:mapper,其中Mapper进行各种映射,比如 ModelMapper 把模型映射为数值(就是转换算法)。
  • 模型 :model,主要是用来读取model source。
  • 基础模块:utils,io。

算法组件在其linkFrom函数中,会做如下操作:

  • 先进行部分初始化,此时会调用部分Flink算子,比如groupBy等等。
  • 再将算法逻辑剥离出来,委托给Mapper或者ComQueueItem。
  • Mapper或者ComQueueItem会调用Flink map算子或者mapPartition算子等。
  • 调用Flink算子过程就是把算法分割然后适配到Flink上的过程。

下面就一一阐述。

1. Flink上下文封装

MLEnvironment 是个重要的类。其封装了Flink开发所必须要的运行上下文。用户可以通过这个类来获取各种实际运行环境,可以建立table,可以运行SQL语句。

/**
 * The MLEnvironment stores the necessary context in Flink.
 * Each MLEnvironment will be associated with a unique ID.
 * The operations associated with the same MLEnvironment ID
 * will share the same Flink job context.
 */
public class MLEnvironment {
    private ExecutionEnvironment env;
    private StreamExecutionEnvironment streamEnv;
    private BatchTableEnvironment batchTableEnv;
    private StreamTableEnvironment streamTableEnv;
}

2. Function

Function是计算框架中,对于计算和通讯等业务逻辑的最小模块。具体定义如下。

  • ComputeFunction 是计算模块。
  • CommunicateFunction 是通讯模块。CommunicateFunction和ComputeFunction都是ComQueueItem子类,它们是业务逻辑实现者。
  • CompareCriterionFunction 是判断模块,用来判断何时结束循环。这就允许用户指定迭代终止条件。
  • CompleteResultFunction 用来在结束循环时候调用,作为循环结果。
  • Mapper也是一种Funciton,即Mapper Function。

后续将统称为 Function。

/**
 * Basic build block in {@link BaseComQueue}, for either communication or computation.
 */
public interface ComQueueItem extends Serializable {}

/**
 * An BaseComQueue item for computation.
 */
public abstract class ComputeFunction implements ComQueueItem {

	/**
	 * Perform the computation work.
	 *
	 * @param context to get input object and update output object.
	 */
	public abstract void calc(ComContext context);
}

/**
 * An BaseComQueue item for communication.
 */
public abstract class CommunicateFunction implements ComQueueItem {

    /**
     * Perform communication work.
     *
     * @param input     output of previous queue item.
     * @param sessionId session id for shared objects.
     * @param <T>       Type of dataset.
     * @return result dataset.
     */
	public abstract <T> DataSet <T> communicateWith(DataSet <T> input, int sessionId);
}

结合我们代码来看,KMeansTrainBatchOp算法组件的部分作用是:KMeans算法被分割成若干CommunicateFunction。然后被添加到计算通讯队列上。

下面代码中,具体 Item 如下:

  • ComputeFunction :KMeansPreallocateCentroid,KMeansAssignCluster,KMeansUpdateCentroids
  • CommunicateFunction :AllReduce
  • CompareCriterionFunction :KMeansIterTermination
  • CompleteResultFunction : KMeansOutputModel

即算法实现的主要工作是:

  • 构建了一个IterativeComQueue。
  • 初始化数据,这里有两种办法:initWithPartitionedData将DataSet分片缓存至内存。initWithBroadcastData将DataSet整体缓存至每个worker的内存。
  • 将计算分割为若干ComputeFunction,串联在IterativeComQueue
  • 运用AllReduce通信模型完成了数据同步
	static DataSet <Row> iterateICQ(...省略...) {

		return new IterativeComQueue()
			.initWithPartitionedData(TRAIN_DATA, data)
			.initWithBroadcastData(INIT_CENTROID, initCentroid)
			.initWithBroadcastData(KMEANS_STATISTICS, statistics)
			.add(new KMeansPreallocateCentroid())
			.add(new KMeansAssignCluster(distance))
			.add(new AllReduce(CENTROID_ALL_REDUCE))
			.add(new KMeansUpdateCentroids(distance))
			.setCompareCriterionOfNode0(new KMeansIterTermination(distance, tol))
			.closeWith(new KMeansOutputModel(distanceType, vectorColName, latitudeColName, longitudeColName))
			.setMaxIter(maxIter)
			.exec();
	}

3. 计算/通讯队列

BaseComQueue 就是这个迭代框架的基础。它维持了一个 List<ComQueueItem> queue。用户在生成算法模块时候,会把各种 Function 添加到队列中。

IterativeComQueue 是 BaseComQueue 的缺省实现,具体实现了setMaxIter,setCompareCriterionOfNode0两个函数。

BaseComQueue两个重要函数是:

  • optimize 函数:把队列上相邻的 ComputeFunction串联起来,形成一个 ChainedComputation。在框架中进行优化,就是Alink的一个优势所在
  • exec 函数:运行队列上的各个 Function,返回最终的 Dataset。实际上,这里才真正到了 Flink,比如把计算队列上的各个 ComputeFunction 映射到 Flink 的 RichMapPartitionFunction。然后在mapPartition函数调用中,会调用真实算法逻辑片断 computation.calc(context);

可以认为,BaseComQueue 是个逻辑概念,让算法工程师可以更好的组织自己的业务语言。而通过其exec函数把算法逻辑映射到Flink算子上。这样在某种程度上起到了与Flink解耦合的作用。

具体定义(摘取函数内部分代码)如下:

// Base class for the com(Computation && Communicate) queue.
public class BaseComQueue<Q extends BaseComQueue<Q>> implements Serializable {

	/**
	 * All computation or communication functions.
	 */
	private final List<ComQueueItem> queue = new ArrayList<>();
    
	/**
	 * The function executed to decide whether to break the loop.
	 */
	private CompareCriterionFunction compareCriterion;

	/**
	 * The function executed when closing the iteration
	 */
	private CompleteResultFunction completeResult;    
    
	private void optimize() {
		if (queue.isEmpty()) {
			return;
		}

		int current = 0;
		for (int ahead = 1; ahead < queue.size(); ++ahead) {
			ComQueueItem curItem = queue.get(current);
			ComQueueItem aheadItem = queue.get(ahead);

            // 这里进行判断,是否是前后都是 ComputeFunction,然后合并成 ChainedComputation
			if (aheadItem instanceof ComputeFunction && curItem instanceof ComputeFunction) {
				if (curItem instanceof ChainedComputation) {
					queue.set(current, ((ChainedComputation) curItem).add((ComputeFunction) aheadItem));
				} else {
					queue.set(current, new ChainedComputation()
						.add((ComputeFunction) curItem)
						.add((ComputeFunction) aheadItem)
					);
				}
			} else {
				queue.set(++current, aheadItem);
			}
		}

		queue.subList(current + 1, queue.size()).clear();
	}    
    
	/**
	 * Execute the BaseComQueue and get the result dataset.
	 *
	 * @return result dataset.
	 */
	public DataSet<Row> exec() {
        
		optimize();

		IterativeDataSet<byte[]> loop
			= loopStartDataSet(executionEnvironment)
			.iterate(maxIter);

		DataSet<byte[]> input = loop
			.mapPartition(new DistributeData(cacheDataObjNames, sessionId))
			.withBroadcastSet(loop, "barrier")
			.name("distribute data");

		for (ComQueueItem com : queue) {
			if ((com instanceof CommunicateFunction)) {
				CommunicateFunction communication = ((CommunicateFunction) com);         
         // 这里会调用比如 AllReduce.communication, 其会返回allReduce包装后赋值给input,当循环遇到了下一个ComputeFunction(KMeansUpdateCentroids)时候,会把input赋给它处理。比如input = {MapPartitionOperator@5248},input.function = {AllReduce$AllReduceRecv@5260},input调用mapPartition,去间接调用KMeansUpdateCentroids。              
				input = communication.communicateWith(input, sessionId);
			} else if (com instanceof ComputeFunction) {
				final ComputeFunction computation = (ComputeFunction) com;

        // 这里才到了 Flink,把计算队列上的各个 ComputeFunction 映射到 Flink 的RichMapPartitionFunction。
				input = input
						.mapPartition(new RichMapPartitionFunction<byte[], byte[]>() {

						@Override
						public void mapPartition(Iterable<byte[]> values, Collector<byte[]> out) {
							ComContext context = new ComContext(
								sessionId, getIterationRuntimeContext()
							);
              // 在这里会被Flink调用具体计算函数,就是之前算法工程师拆分的算法片段。
							computation.calc(context);
						}
					})
					.withBroadcastSet(input, "barrier")
					.name(com instanceof ChainedComputation ?
						((ChainedComputation) com).name()
						: "computation@" + computation.getClass().getSimpleName());
			} else {
				throw new RuntimeException("Unsupported op in iterative queue.");
			}
		}

		return serializeModel(clearObjs(loopEnd));
	}
}

4. Mapper(Function)

Mapper是底层迭代计算框架的一部分,可以认为是 Mapper Function。因为涉及到业务逻辑,所以提前说明。

5. 初始化

初始化发生在 KMeansTrainBatchOp.linkFrom 中。我们可以看到在初始化时候,是可以调用 Flink 各种算子(比如.rebalance().map()) ,因为这时候还没有和框架相关联,这时候的计算是用户自行控制,不需要加到 IterativeComQueue 之上。

如果某一个计算既要加到 IterativeComQueue 之上,还要自己玩 Flink 算子,那框架就懵圈了,不知道该如何处理。所以用户自由操作只能发生在没有和框架联系之前

	@Override
	public KMeansTrainBatchOp linkFrom(BatchOperator <?>... inputs) {
		DataSet <FastDistanceVectorData> data = statistics.f0.rebalance().map(
			new MapFunction <Vector, FastDistanceVectorData>() {
				@Override
				public FastDistanceVectorData map(Vector value) {
					return distance.prepareVectorData(Row.of(value), 0);
				}
			});
		......     
    }

框架也提供了初始化功能,用于将DataSet缓存到内存中,缓存的形式包括Partition和Broadcast两种形式。前者将DataSet分片缓存至内存,后者将DataSet整体缓存至每个worker的内存。

		return new IterativeComQueue()
			.initWithPartitionedData(TRAIN_DATA, data)
			.initWithBroadcastData(INIT_CENTROID, initCentroid)
			.initWithBroadcastData(KMEANS_STATISTICS, statistics)
            ......

6. ComputeFunction

这是算法的具体计算模块,算法工程师应该把算法拆分成各个可以并行处理的模块,分别用 ComputeFunction 实现,这样可以利用 Flnk 的分布式计算效力。

下面举出一个例子如下,这段代码为每个点(point)计算最近的聚类中心,为每个聚类中心的点坐标的计数和求和:

/**
 * Find the closest cluster for every point and calculate the sums of the points belonging to the same cluster.
 */
public class KMeansAssignCluster extends ComputeFunction {
    private FastDistance fastDistance;
    private transient DenseMatrix distanceMatrix;

    @Override
    public void calc(ComContext context) {
        Integer vectorSize = context.getObj(KMeansTrainBatchOp.VECTOR_SIZE);
        Integer k = context.getObj(KMeansTrainBatchOp.K);
        // get iterative coefficient from static memory.
        Tuple2<Integer, FastDistanceMatrixData> stepNumCentroids;
        if (context.getStepNo() % 2 == 0) {
            stepNumCentroids = context.getObj(KMeansTrainBatchOp.CENTROID1);
        } else {
            stepNumCentroids = context.getObj(KMeansTrainBatchOp.CENTROID2);
        }

        if (null == distanceMatrix) {
            distanceMatrix = new DenseMatrix(k, 1);
        }

        double[] sumMatrixData = context.getObj(KMeansTrainBatchOp.CENTROID_ALL_REDUCE);
        if (sumMatrixData == null) {
            sumMatrixData = new double[k * (vectorSize + 1)];
            context.putObj(KMeansTrainBatchOp.CENTROID_ALL_REDUCE, sumMatrixData);
        }

        Iterable<FastDistanceVectorData> trainData = context.getObj(KMeansTrainBatchOp.TRAIN_DATA);
        if (trainData == null) {
            return;
        }

        Arrays.fill(sumMatrixData, 0.0);
        for (FastDistanceVectorData sample : trainData) {
            KMeansUtil.updateSumMatrix(sample, 1, stepNumCentroids.f1, vectorSize, sumMatrixData, k, fastDistance,
                distanceMatrix);
        }
    }
}

这里能够看出,在 ComputeFunction 中,使用的是 命令式编程模式,这样能够最大的契合目前程序员现状,极高提升生产力

7. CommunicateFunction

前面代码中有一个关键处 .add(new AllReduce(CENTROID_ALL_REDUCE))。这部分代码起到了承前启后的作用。之前的 KMeansPreallocateCentroid,KMeansAssignCluster和其后的 KMeansUpdateCentroids通过它做了一个 reduce / broadcast 通讯。

具体从注解中可以看到,AllReduce 是 MPI 相关通讯原语的一个实现。这里主要是对 double[] object 进行 reduce / broadcast。

public class AllReduce extends CommunicateFunction {
	public static <T> DataSet <T> allReduce(
		DataSet <T> input,
		final String bufferName,
		final String lengthName,
		final SerializableBiConsumer <double[], double[]> op,
		final int sessionId) {
		final String transferBufferName = UUID.randomUUID().toString();

		return input
			.mapPartition(new AllReduceSend <T>(bufferName, lengthName, transferBufferName, sessionId))
			.withBroadcastSet(input, "barrier")
			.returns(
				new TupleTypeInfo <>(Types.INT, Types.INT, PrimitiveArrayTypeInfo.DOUBLE_PRIMITIVE_ARRAY_TYPE_INFO))
			.name("AllReduceSend")
			.partitionCustom(new Partitioner <Integer>() {
				@Override
				public int partition(Integer key, int numPartitions) {
					return key;
				}
			}, 0)
			.name("AllReduceBroadcastRaw")
			.mapPartition(new AllReduceSum(bufferName, lengthName, sessionId, op))
			.returns(
				new TupleTypeInfo <>(Types.INT, Types.INT, PrimitiveArrayTypeInfo.DOUBLE_PRIMITIVE_ARRAY_TYPE_INFO))
			.name("AllReduceSum")
			.partitionCustom(new Partitioner <Integer>() {
				@Override
				public int partition(Integer key, int numPartitions) {
					return key;
				}
			}, 0)
			.name("AllReduceBroadcastSum")
			.mapPartition(new AllReduceRecv <T>(bufferName, lengthName, sessionId))
			.returns(input.getType())
			.name("AllReduceRecv");
	}    
}

经过调试我们能看出来,AllReduceSum 是在自己mapPartition实现中,调用了 SUM。

	/**
	 * The all-reduce operation which does elementwise sum operation.
	 */
	public final static SerializableBiConsumer <double[], double[]> SUM
		= new SerializableBiConsumer <double[], double[]>() {
		@Override
		public void accept(double[] a, double[] b) {
			for (int i = 0; i < a.length; ++i) {
				a[i] += b[i];
			}
		}
	};

private static class AllReduceSum extends RichMapPartitionFunction <Tuple3 <Integer, Integer, double[]>, Tuple3 <Integer, Integer, double[]>> {
		@Override
		public void mapPartition(Iterable <Tuple3 <Integer, Integer, double[]>> values,
								 Collector <Tuple3 <Integer, Integer, double[]>> out) {

      // 省略各种初始化操作,比如确定传输位置,传输目标等
      ......
	
			do {
				Tuple3 <Integer, Integer, double[]> val = it.next();
				int localPos = val.f1 - startPos;
				if (sum[localPos] == null) {
					sum[localPos] = val.f2;
					agg[localPos]++;
				} else {
          // 这里会调用 SUM 
					op.accept(sum[localPos], val.f2);
				}
			} while (it.hasNext());

			for (int i = 0; i < numOfSubTasks; ++i) {
				for (int j = 0; j < cnt; ++j) {
					out.collect(Tuple3.of(i, startPos + j, sum[j]));
				}
			}
		}
	}

accept:129, AllReduce$3 (com.alibaba.alink.common.comqueue.communication)
accept:126, AllReduce$3 (com.alibaba.alink.common.comqueue.communication)
mapPartition:314, AllReduce$AllReduceSum (com.alibaba.alink.common.comqueue.communication)
run:103, MapPartitionDriver (org.apache.flink.runtime.operators)
run:504, BatchTask (org.apache.flink.runtime.operators)
run:157, AbstractIterativeTask (org.apache.flink.runtime.iterative.task)
run:107, IterationIntermediateTask (org.apache.flink.runtime.iterative.task)
invoke:369, BatchTask (org.apache.flink.runtime.operators)
doRun:705, Task (org.apache.flink.runtime.taskmanager)
run:530, Task (org.apache.flink.runtime.taskmanager)
run:745, Thread (java.lang)

0x06 另一种打法

总结到现在,我们发现这个迭代计算框架设计的非常优秀。但是Alink并没有限定大家只能使用这个框架来实现算法。如果你是Flink高手,你完全可以随心所欲的实现。

Alink例子中本身就有一个这样的实现 ALSExample。其核心类 AlsTrainBatchOp 就是直接使用了 Flink 算子,IterativeDataSet 等。

这就好比是武松武都头,一双戒刀搠得倒贪官佞臣,赤手空拳也打得死吊睛白额大虫

public final class AlsTrainBatchOp
    extends BatchOperator<AlsTrainBatchOp>
    implements AlsTrainParams<AlsTrainBatchOp> {

    @Override
    public AlsTrainBatchOp linkFrom(BatchOperator<?>... inputs) {
        BatchOperator<?> in = checkAndGetFirst(inputs);

 		......

        AlsTrain als = new AlsTrain(rank, numIter, lambda, implicitPrefs, alpha, numMiniBatches, nonNegative);
        DataSet<Tuple3<Byte, Long, float[]>> factors = als.fit(alsInput);

        DataSet<Row> output = factors.mapPartition(new RichMapPartitionFunction<Tuple3<Byte, Long, float[]>, Row>() {
            @Override
            public void mapPartition(Iterable<Tuple3<Byte, Long, float[]>> values, Collector<Row> out) {
                new AlsModelDataConverter(userColName, itemColName).save(values, out);
            }
        });
 
        return this;
    }
}

多提一点,Flink ML中也有ALS算法,是一个Scala实现。没有Scala经验的算法工程师看代码会咬碎钢牙。

0x07 总结

经过这两篇文章的推测和验证,现在我们总结如下。

Alink的部分设计原则

  • 算法的归算法,Flink的归Flink,尽量屏蔽AI算法和Flink之间的联系。

  • 采用最简单,最常见的开发语言和思维方式。

  • 尽量借鉴市面上通用的机器学习设计思路和开发模式,让开发者无缝切换。

  • 构建一套战术打法(middleware或者adapter),即屏蔽了Flink,又可以利用好Flink,还可以让用户基于此可以快速开发算法。

针对这些原则,Alink实现了

  • 顶层流水线,Estimator, Transformer...
  • 算法组件中间层
  • 底层迭代计算框架

这样Alink即可以最大限度的享受Flink带来的各种优势,也能顺应目前形势,让算法工程师工作更方便。从而达到系统性能和生产力的双重提升。

下一篇文章争取介绍 AllReduce 的具体实现。

0x08 参考

k-means聚类算法原理简析

flink kmeans聚类算法实现

Spark ML简介之Pipeline,DataFrame,Estimator,Transformer

开源 | 全球首个批流一体机器学习平台

斩获GitHub 2000+ Star,阿里云开源的 Alink 机器学习平台如何跑赢双11数据“博弈”?|AI 技术生态论

Flink DataSet API

Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构

标签:预处理   enter   解耦   快速   生产   内存   reducer   ids   开源   

原文地址:https://www.cnblogs.com/rossiXYZ/p/12861848.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!