标签:lan die tor under sig amp gradient inline lang
Using subgradient method to solve lasso problem
The problem is to solve:
\[\underset{\beta}{\operatorname{minimize}}\left\{\frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-z_{i} \beta\right)^{2}+\lambda|\beta|\right\}
\]
Subgradient Optimality:
\[0 \in \partial\left\{\frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-z_{i} \beta\right)^{2}+\lambda|\beta|\right\}
\]
\[\Longleftrightarrow 0 \in-\frac{1}{N}\sum_{i=1}^{N}z_i(y_i-z_i\beta)+\lambda \partial|\beta|
\]
Denote \(v=\partial|\beta|\),according to the definition of subgradient, we have
\[v \in\left\{\begin{array}{ll}
\{1\} & \text { if } \beta>0 \\{-1\} & \text { if } \beta<0 \{[-1,1]} & \text { if } \beta=0
\end{array}\right.
\]
The subgradient optimality condition is
\[\frac{1}{N}\sum_{i=1}^{N}z_i(y_i-z_i\beta)=\lambda v
\]
-
if \(\beta>0, v=1\)
\[\frac{1}{N}\sum_{i=1}^{N}z_i(y_i-z_i\beta)=\lambda
\]
we can solve \(\beta=\frac{\sum z_iy_i-\lambda N}{\sum z_i^2}\)
Since zi is standardized,\(\sum z_i^2=N\),
\[\beta=\frac{\sum z_iy_i-\lambda N}N\\=\frac{1}{N}\langle\mathbf{z}, \mathbf{y}\rangle-\lambda
\]
-
if \(\beta<0\), \(v=-1\)
\[\frac{1}{N}\sum_{i=1}^{N}z_i(y_i-z_i\beta)=-\lambda
\]
we can solve \(\beta=\frac{\sum z_iy_i+\lambda N}{\sum z_i^2}\)
Since zi is standardized,\(\sum z_i^2=N\),
\[\beta=\frac{\sum z_iy_i+\lambda N}N\\=\frac{1}{N}\langle\mathbf{z}, \mathbf{y}\rangle+\lambda
\]
-
if \(\beta=0,|v|\le1\)
\[|\frac{1}{N}\sum_{i=1}^{N}z_i(y_i-z_i\beta)|\le\lambda
\]
Since \(\beta=0,\) we have \(\frac{1}{N}|\langle\mathbf{z}, \mathbf{y}\rangle| \leq \lambda\)
In conclusion, we have:
\[\widehat{\beta}=\left\{\begin{array}{ll}
\frac{1}{N}\langle\mathbf{z}, \mathbf{y}\rangle-\lambda & \text { if } \frac{1}{N}\langle\mathbf{z}, \mathbf{y}\rangle \quad>\lambda \0 & \text { if } \frac{1}{N}|\langle\mathbf{z}, \mathbf{y}\rangle| \leq \lambda \\frac{1}{N}\langle\mathbf{z}, \mathbf{y}\rangle+\lambda & \text { if } \frac{1}{N}\langle\mathbf{z}, \mathbf{y}\rangle<-\lambda
\end{array}\right.\]
i.e.
\[\widehat{\beta}=\mathcal{S}_{\lambda}\left(\frac{1}{N}\langle\mathbf{z}, \mathbf{y}\rangle\right)
\]
Where $$\mathcal{S}_{\lambda}(x)=\operatorname{sign}(x)(|x|-\lambda)$$
使用次梯度法求解lasso
标签:lan die tor under sig amp gradient inline lang
原文地址:https://www.cnblogs.com/zzqingwenn/p/12864268.html