标签:分词 set 环境 map tin text nts font executor
批处理代码:
package com.wyh.wc import org.apache.flink.api.scala._ /** * 批处理代码 */ object WordCount { def main(args: Array[String]): Unit = { //创建一个批处理的一个环境 val env = ExecutionEnvironment.getExecutionEnvironment val inputPath = "D:\\shujia\\shujia006\\FlinkWyh\\src\\main\\data\\word" val inputDataSet = env.readTextFile(inputPath) //分词之后做count val wordcountSet = inputDataSet .flatMap(lines => lines.split(" ")) .map((_, 1)) .groupBy(0) .sum(1) //打印 wordcountSet.map(x => { x._1 + " " + x._2 }).print() } }
流处理代码:
package com.wyh.wc import org.apache.flink.api.java.utils.ParameterTool import org.apache.flink.streaming.api.scala._ object StreamWordCount { def main(args: Array[String]): Unit = { //创建一个流处理的执行环境 val env = StreamExecutionEnvironment.getExecutionEnvironment //为了host和port不写死,flink提供了一个方法 val params = ParameterTool.fromArgs(args) // val host = params.get("host") // // val port = params.getInt("port") //env.disableOperatorChaining()//全局打散 一个算子一个任务 //每一个算子也会有个方法 .disableChaining() 将这个算子单独拿出来 //还有个方法.startNewChain() 将当前算子之前面和后面 分开 //部署到集群中接收socket数据流 // val dataStream: DataStream[String] = env.socketTextStream(host, port) //接收socket数据流 val dataStream = env.socketTextStream("localhost", 9999) //逐一读取数据,打散进行WordCount val wordCountStream = dataStream.flatMap(_.split("\\s")) .filter(_.nonEmpty) .map((_, 1)) .keyBy(0) .sum(1) wordCountStream.print().setParallelism(1) //比批处理多一个步骤 //真正执行这个任务,启动它的Executor env.execute("WordCountStream") } }
Flink学习(三) 批流版本的wordcount Scala版本
标签:分词 set 环境 map tin text nts font executor
原文地址:https://www.cnblogs.com/wyh-study/p/12872872.html