码迷,mamicode.com
首页 > 其他好文 > 详细

[LeetCode] 1442. Count Triplets That Can Form Two Arrays of Equal XOR

时间:2020-05-12 09:30:41      阅读:59      评论:0      收藏:0      [点我收藏+]

标签:res   fine   arrays   turn   ant   code   htm   +=   bsp   

Given an array of integers arr.

We want to select three indices ij and k where (0 <= i < j <= k < arr.length).

Let‘s define a and b as follows:

  • a = arr[i] ^ arr[i + 1] ^ ... ^ arr[j - 1]
  • b = arr[j] ^ arr[j + 1] ^ ... ^ arr[k]

Note that ^ denotes the bitwise-xor operation.

Return the number of triplets (ij and k) Where a == b.

Example 1:

Input: arr = [2,3,1,6,7]
Output: 4
Explanation: The triplets are (0,1,2), (0,2,2), (2,3,4) and (2,4,4)

Example 2:

Input: arr = [1,1,1,1,1]
Output: 10

Example 3:

Input: arr = [2,3]
Output: 0

Example 4:

Input: arr = [1,3,5,7,9]
Output: 3

Example 5:

Input: arr = [7,11,12,9,5,2,7,17,22]
Output: 8

Constraints:

  • 1 <= arr.length <= 300
  • 1 <= arr[i] <= 10^8

形成两个异或相等数组的三元组数目。题意是请你返回一个三元组(i, j, k),这三个数字都是数组里面的index,请你返回三元组使得a == b并且a, b满足

  • a = arr[i] ^ arr[i + 1] ^ ... ^ arr[j - 1]
  • b = arr[j] ^ arr[j + 1] ^ ... ^ arr[k]

思路是位运算。既然a和b的得出都是位运算,而且a == b所以得出a ^ b = 0的结论,因为两数相同异或为0,这个结论是可以被反推的,所以这个题是在找是否能满足a ^ b = 0的三元组。所以可以试着从i开始一路往后做异或操作,如果找到某一个坐标k使得数字i到k的部分异或为0,那么这个中间j的位置就有k - i种可能了。

时间O(n^2)

空间O(1)

Java实现

 1 class Solution {
 2     public int countTriplets(int[] arr) {
 3         int len = arr.length;
 4         if (len < 2) {
 5             return 0;
 6         }
 7         int res = 0;
 8         for (int i = 0; i < len; i++) {
 9             int temp = arr[i];
10             for (int j = i + 1; j < len; j++) {
11                 temp = temp ^ arr[j];
12                 if (temp == 0) {
13                     res += j - i;
14                 }
15             }
16         }
17         return res;
18     }
19 }

 

LeetCode 题目总结

[LeetCode] 1442. Count Triplets That Can Form Two Arrays of Equal XOR

标签:res   fine   arrays   turn   ant   code   htm   +=   bsp   

原文地址:https://www.cnblogs.com/cnoodle/p/12873944.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!