码迷,mamicode.com
首页 > 其他好文 > 详细

矩阵论练习10(线性映射和核子空间的值域、基和维数)

时间:2020-05-13 09:28:12      阅读:287      评论:0      收藏:0      [点我收藏+]

标签:映射   lin   math   形式   基础   线性   ora   span   题目   

线性映射的性质

假设 \(f:V\rightarrow U\) 是线性映射,则:

  1. \(f(\theta)=\theta\), \(\theta\) 代表 \(0\)
  2. \(\alpha_1,\alpha_2,\cdots,\alpha_s\in V, k_1,k_2,\cdots, k_s\in F\),则 \(f(\sum_{i=1}^s k_i\alpha_i) =\sum_{i=1}^sk_i f(\alpha_i)\)
  3. \(\alpha_1,\alpha_2,\cdots,\alpha_s\in V\) 线性相关,则 \(f(\alpha_1),f(\alpha_2),\cdots,f(\alpha_s)\in U\) 线性相关
  4. \(V=L(\alpha_1,\alpha_2,\cdots,\alpha_s)\),则 \(f\) 的值域 \(f(V)=L(f(\alpha_1),f(\alpha_2),\cdots,f(\alpha_s))\); \(L\) 表示里面元素张成的子空间
  5. \(f^{-1}(\theta)=\{x\in V|f(x)=\theta\}\)\(V\) 的子空间,称为 \(f\) 的核子空间

题目

\(A\in F^{s\times n}\),求线性映射 \(f\) 的值域及核子空间的基和维数,其中: \(f:F^n \rightarrow F^s\) 定义为:\(f(x)=Ax, \forall x\in F^s\).

解答

\(f\) 的定义域为 \(F^n = L(e_1,e_2,\cdots,e_n)\) ,则值域为 \(f(F^n)=L(f(e_1),\cdots,f(e_n))\)
\(A\) 写成 \(A=(\alpha_1,\cdots,\alpha_n)\) 的形式,则 \(Ae_j = \alpha_j\)
所以 \(f(F^n)=L(\alpha_1,\cdots,\alpha_n)\)。其基即是 \(A\) 中的一个极大无关组,维数等于 \(A\) 的列向量中的极大无关组的组数,也等于 \(A\) 的秩 \(R(A)\)

\(f\) 的核子空间 \(f^{-1}(\theta)=\{x|f(x)=\theta\}=\{x|Ax=\theta\}\),这个空间的基即是 \(Ax=\theta\) 的基础解系,其维数为 \(n-R(A)\)

矩阵论练习10(线性映射和核子空间的值域、基和维数)

标签:映射   lin   math   形式   基础   线性   ora   span   题目   

原文地址:https://www.cnblogs.com/forcekeng/p/12878049.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!