码迷,mamicode.com
首页 > 其他好文 > 详细

求1到n的约数个数

时间:2020-05-17 16:03:41      阅读:124      评论:0      收藏:0      [点我收藏+]

标签:png   就会   优化   ++   图片   意思   不同的   nbsp   约数   

题意

  给出一个n,要求求出1到n的所有数的约数个数和。

思路过程及代码

  如果一个一个数暴力去求,那么复杂度接近n根号n。这里不把暴力的代码给出来。

  现在我们考虑每个约数的贡献,约数x对总约数个数和的贡献为n/x,换句话说1到n含约数x的有n/x个,为什么呢?x的倍数的约数自然含x,换句话说现在就是在求n个数含多少个x的倍数,所以用n/x就行。所以我们得到了一个O(n)的算法。

ll gao(ll n){
    ll ans=0;
      for(ll i=1;i<=n;i++){
          ans+=n/i;    
    }
      return ans;
}

  O(n)的算法看起来还不错,但我们还可以继续优化,很多地方的n/i是一样的,如果我们能一次性求出每个不同的n/i,那么就可以优化了。

  我们来看n=10的例子

  技术图片

  通过观察我们可以看到,n/i相同的列都是连续的,这是因为这里的除是整除,n/i其实就是真实值的整数部分。

  那么如果我们能求出每一个n/i的区间长度,那么他们的贡献就是长度*(n/i)了

  现在我们设n/i=t,n/i=t的最末位置为j,那么对应就是这一段表

  技术图片

  我们只要求出j,那么长度就是j-i+1了

  那么j怎么求呢,因为n/i=t,t是向下取整的,那么n/t的值就会对应向上增,增到j,什么意思呢?例如n=11,i=4和5的值对应的n/i都是2,11/4=2.75=2,11/5=2.2=2,那么11/2就等于5.5=5就等于j了,是不是很神奇,于是乎对于每个n/i=t的不同t,我们算一遍就行。我们可以得到一个近似O(√n)的算法

ll gao(ll n){
    ll ans=0;
      for(ll i=1,j;i<=n;i=j+1){
          j=n/(n/i);
        ans+=(j-i+1)*(n/i);    
    }
      return ans;
}

 

 

 

  

 

求1到n的约数个数

标签:png   就会   优化   ++   图片   意思   不同的   nbsp   约数   

原文地址:https://www.cnblogs.com/qq2210446939/p/12905431.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!