标签:inf git 处理 分割 技术 pack ati return mis
1. 读邮件数据集文件,提取邮件本身与标签。
列表
numpy数组
2.邮件预处理
2.1 传统方法来实现
2.2 nltk库的安装与使用
pip install nltk
import nltk
nltk.download() # sever地址改成 http://www.nltk.org/nltk_data/
或
https://github.com/nltk/nltk_data下载gh-pages分支,里面的Packages就是我们要的资源。
将Packages文件夹改名为nltk_data。
或
网盘链接:https://pan.baidu.com/s/1iJGCrz4fW3uYpuquB5jbew 提取码:o5ea
放在用户目录。
----------------------------------
安装完成,通过下述命令可查看nltk版本:
import nltk
print nltk.__doc__
nltk.sent_tokenize(text) #对文本按照句子进行分割
nltk.word_tokenize(sent) #对句子进行分词
from nltk.corpus import stopwords
stops=stopwords.words(‘english‘)
*如果提示需要下载punkt
nltk.download(‘punkt’)
或 下载punkt.zip
https://pan.baidu.com/s/1OwLB0O8fBWkdLx8VJ-9uNQ 密码:mema
复制到对应的失败的目录C:\Users\Administrator\AppData\Roaming\nltk_data\tokenizers并解压。
nltk.pos_tag(tokens)
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
lemmatizer.lemmatize(‘leaves‘) #缺省名词
lemmatizer.lemmatize(‘best‘,pos=‘a‘)
lemmatizer.lemmatize(‘made‘,pos=‘v‘)
一般先要分词、词性标注,再按词性做词性还原。
def preprocessing(text):
sms_data.append(preprocessing(line[1])) #对每封邮件做预处理
3. 训练集与测试集
4. 词向量
5. 模型
import csv
import nltk
from mistune import preprocessing
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
def preprocessing(text):
# 分词
fenge = []
for sent in nltk.sent_tokenize(text):
for word in nltk.word_tokenize(sent):
fenge.append(word)
# 停用词
stops = stopwords.words("english")
tingyong = [i for i in fenge if i not in stops]
# 磁性标注
nltk.pos_tag(tingyong)
# 磁性还原
lemmatizer = WordNetLemmatizer()
huanyuan = []
for i in tingyong:
huanyuan.append(lemmatizer.lemmatize(i, pos=‘v‘))
for i in tingyong:
huanyuan.append(lemmatizer.lemmatize(i, pos=‘a‘))
for i in tingyong:
huanyuan.append(lemmatizer.lemmatize(i, pos=‘n‘))
return huanyuan
file_path=r‘C:\Users\we\Desktop\SMSSpamCollection‘
sms=open(file_path,‘r‘,encoding=‘utf-8‘)
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter=‘\t‘)
for line in csv_reader:
sms_label.append(line[0])
sms_data.append(preprocessing(line[1]))
sms.close()
print("分词标注停用还原后的数据",sms_data[1:10])
print("邮件分类2",sms_label)
标签:inf git 处理 分割 技术 pack ati return mis
原文地址:https://www.cnblogs.com/wujiabin/p/12907012.html