码迷,mamicode.com
首页 > 其他好文 > 详细

12.朴素贝叶斯-垃圾邮件分类

时间:2020-05-18 12:42:59      阅读:75      评论:0      收藏:0      [点我收藏+]

标签:mini   提示   col   函数   分类   地址   返回   end   失败   

1. 读邮件数据集文件,提取邮件本身与标签。

列表

numpy数组

技术图片

2.邮件预处理

  • 邮件分句
  • 名子分词
  • 去掉过短的单词
  • 词性还原
  • 连接成字符串

 

  •  传统方法来实现
  •  nltk库的安装与使用

pip install nltk

import nltk

nltk.download()     # sever地址改成 http://www.nltk.org/nltk_data/

https://github.com/nltk/nltk_data下载gh-pages分支,里面的Packages就是我们要的资源。

将Packages文件夹改名为nltk_data。

网盘链接:https://pan.baidu.com/s/1iJGCrz4fW3uYpuquB5jbew    提取码:o5ea

放在用户目录。

----------------------------------

安装完成,通过下述命令可查看nltk版本:

import nltk
print nltk.__doc__

 技术图片

2.1 nltk库 分词

nltk.sent_tokenize(text) #对文本按照句子进行分割

nltk.word_tokenize(sent) #对句子进行分词

2.2 punkt 停用词

from nltk.corpus import stopwords

stops=stopwords.words(‘english‘)

*如果提示需要下载punkt

nltk.download(‘punkt’)

或 下载punkt.zip

https://pan.baidu.com/s/1OwLB0O8fBWkdLx8VJ-9uNQ  密码:mema

复制到对应的失败的目录C:\Users\Administrator\AppData\Roaming\nltk_data\tokenizers并解压。

 

2.3 NLTK 词性标注

nltk.pos_tag(tokens)

2.4 Lemmatisation(词性还原)

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmatizer.lemmatize(‘leaves‘) #缺省名词

lemmatizer.lemmatize(‘best‘,pos=‘a‘)

lemmatizer.lemmatize(‘made‘,pos=‘v‘)

一般先要分词、词性标注,再按词性做词性还原。

2.5 编写预处理函数

def preprocessing(text):

sms_data.append(preprocessing(line[1])) #对每封邮件做预处理

 

3. 训练集与测试集

4. 词向量

5. 模型

代码:

import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import csv

def preprocessing(text):
    tokens = [];
    for sent in nltk.sent_tokenize(text):  # 划分多个句子
        for word in nltk.word_tokenize(sent):  # 对每个句子进行
            tokens.append(word)             #对每个分词放到列表里面
    #tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]

    #去掉停用词(停用器)
        stops = stopwords.words("english")
    tokens = [token for token in tokens if token not in stops]

    #词性标注
    nltk.pos_tag(tokens)

    #词性还原
    lemmatizer = WordNetLemmatizer()     #定义还原对象
    tokens = [lemmatizer.lemmatize(token, pos=n) for token in tokens]   #还原名词
    tokens = [lemmatizer.lemmatize(token, pos=v) for token in tokens]   #还原动词
    tokens = [lemmatizer.lemmatize(token, pos=a) for token in tokens]   #还原形容词

    return tokens  #返回结果


sms = open("venv/data/SMSSpamCollection","r",encoding="utf-8")      #读取数据集
sms_data = []   #提取邮件内容
sms_label = []  #提取邮件标签
csv_reader = csv.reader(sms,delimiter="\t")
for line in csv_reader:
    sms_label.append(line[0])
    sms_data.append(preprocessing(line[1]))   #对每封邮件做预处理
sms.close()

print("标题是:",sms_label)
print("内容是:")
for i in sms_data:
    print(i)

截图:

技术图片

 

12.朴素贝叶斯-垃圾邮件分类

标签:mini   提示   col   函数   分类   地址   返回   end   失败   

原文地址:https://www.cnblogs.com/q1uj1e/p/12909643.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!