标签:邮件内容 use RoCE 就是 admin tor href ade 模型
1. 读邮件数据集文件,提取邮件本身与标签。
列表
numpy数组
import csv file_path = r"SMSSpamCollection" sms = open(file_path, ‘r‘, encoding=‘utf-8‘) data = csv.reader(sms, delimiter="\t") for r in data: print(r) sms.close()
2.邮件预处理
pip install nltk
import nltk
nltk.download() # sever地址改成 http://www.nltk.org/nltk_data/
或
https://github.com/nltk/nltk_data下载gh-pages分支,里面的Packages就是我们要的资源。
将Packages文件夹改名为nltk_data。
或
网盘链接:https://pan.baidu.com/s/1iJGCrz4fW3uYpuquB5jbew 提取码:o5ea
放在用户目录。
----------------------------------
安装完成,通过下述命令可查看nltk版本:
import nltk print(nltk.__doc__)
nltk.sent_tokenize(text) #对文本按照句子进行分割
nltk.word_tokenize(sent) #对句子进行分词
from nltk.corpus import stopwords
stops=stopwords.words(‘english‘)
*如果提示需要下载punkt
nltk.download(‘punkt’)
或 下载punkt.zip
https://pan.baidu.com/s/1OwLB0O8fBWkdLx8VJ-9uNQ 密码:mema
复制到对应的失败的目录C:\Users\Administrator\AppData\Roaming\nltk_data\tokenizers并解压。
nltk.pos_tag(tokens)
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
lemmatizer.lemmatize(‘leaves‘) #缺省名词
lemmatizer.lemmatize(‘best‘,pos=‘a‘)
lemmatizer.lemmatize(‘made‘,pos=‘v‘)
一般先要分词、词性标注,再按词性做词性还原。
def preprocessing(text):
sms_data.append(preprocessing(line[1])) #对每封邮件做预处理
import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import csv # 邮件预处理 def preprocessing(text): # 分词 tokens = [word for sent in nltk.sent_tokenize(text) # 对文本按照句子进行分割 for word in nltk.word_tokenize(sent) # 对句子进行分词 ] # punkt 停用词 stops = stopwords.words("english") # 获取停用词 tokens = [token for token in tokens if token not in stops] # 词性标注 nltk.pos_tag(tokens) #Lemmatisation(词性还原) lemmatizer = WordNetLemmatizer() tokens = [lemmatizer.lemmatize(token, pos=‘n‘) for token in tokens] # 还原成名词 tokens = [lemmatizer.lemmatize(token, pos=‘v‘) for token in tokens] # 还原成动词 tokens = [lemmatizer.lemmatize(token, pos=‘a‘) for token in tokens] # 还原成形容词 return tokens # 返回 filepath = r"SMSSpamCollection" sms = open(filepath, ‘r‘, encoding=‘utf-8‘) # 读取 label = [] # 邮件标题 data = [] # 邮件内容 csv_reader = csv.reader(sms, delimiter=‘\t‘) # 预处理 for line in csv_reader: label.append(line[0]) # 标题 data.append(preprocessing(line[1])) sms.close() # 关闭 print("标题内容:\n", label) for line in data: print(line)
3. 训练集与测试集
4. 词向量
5. 模型
标签:邮件内容 use RoCE 就是 admin tor href ade 模型
原文地址:https://www.cnblogs.com/SeBr7/p/12919705.html