标签:isp 连接 sea 序列 ram lis 表示 arc 学校
所以,首先要创建一个数据库的连接对象,即connection对象,语法如下:
sqlite3.connect(database [,timeout,其他可选参数])
function: 此API打开与SQLite数据库文件的连接。如果成功打开数据库,则返回一个连接对象。
database: 数据库文件的路径,或 “:memory:” ,后者表示在RAM中创建临时数据库。
timeout: 指定连接在引发异常之前等待锁定消失的时间,默认为5.0(秒)
有了connection对象,就能创建游标对象了,即cursor对象,如下:
connection.cursor([cursorClass])
function: 创建一个游标,返回游标对象,该游标将在Python的整个数据库编程中使用。
接下来,看看connection对象 和 cursor对象的 “技能” 吧 ↓↓↓
方法 | 说明 |
connect.cursor() | 上述,返回游标对象 |
connect.execute(sql [,parameters]) | 创建中间游标对象执行一个sql命令 |
connect.executemany(sql [,parameters]) | 创建中间游标对象执行一个sql命令 |
connect.executescript(sql_script) | 创建中间游标对象, 以脚本的形式执行sql命令 |
connect.total_changes() | 返回自打开数据库以来,已增删改的行的总数 |
connect.commit() | 提交当前事务,不使用时为放弃所做的修改,即不保存 |
connect.rollback() | 回滚自上次调用commit()以来所做的修改,即撤销 |
connect.close() | 断开数据库连接 |
方法 | 说明 |
cursor.execute(sql [,parameters]) | 执行一个sql命令 |
cursor.executemany(sql,seq_of_parameters) | 对 seq_of_parameters 中的所有参数或映射执行一个sql命令 |
cursor.executescript(sql_script) | 以脚本的形式一次执行多个sql命令 |
cursor.fetchone() | 获取查询结果集中的下一行,返回一个单一的序列,当没有更多可用的数据时,则返回 None。 |
cursor.fetchmany([size=cursor.arraysize]) | 获取查询结果集中的下一行组,返回一个列表。当没有更多的可用的行时,则返回一个空的列表。size指定特定行数。 |
cursor.fetchall() | 获取查询结果集中所有(剩余)的行,返回一个列表。当没有可用的行时,则返回一个空的列表。 |
import sqlite3 from pandas import DataFrame import requests class SQL_method: ‘‘‘ function: 可以实现对数据库的基本操作 ‘‘‘ def __init__ (self, dbName, tableName, data, columns, COLUMNS, Read_All=True): ‘‘‘ function: 初始化参数 dbName: 数据库文件名 tableName: 数据库中表的名称 data: 从csv文件中读取且经过处理的数据 columns: 用于创建数据库,为表的第一行 COLUMNS: 用于数据的格式化输出,为输出的表头 Read_All: 创建表之后是否读取出所有数据 ‘‘‘ self.dbName = dbName self.tableName = tableName self.data = data self.columns = columns self.COLUMNS = COLUMNS self.Read_All = Read_All def creatTable(self): ‘‘‘ function: 创建数据库文件及相关的表 ‘‘‘ # 连接数据库 connect = sqlite3.connect(self.dbName) # 创建表 connect.execute("CREATE TABLE {}({})".format(self.tableName, self.columns)) # 提交事务 connect.commit() # 断开连接 connect.close() def destroyTable(self): ‘‘‘ function: 删除数据库文件中的表 ‘‘‘ # 连接数据库 connect = sqlite3.connect(self.dbName) # 删除表 connect.execute("DROP TABLE {}".format(self.tableName)) # 提交事务 connect.commit() # 断开连接 connect.close() def insertDataS(self): ‘‘‘ function: 向数据库文件中的表插入多条数据 ‘‘‘ # 连接数据库 connect = sqlite3.connect(self.dbName) # 插入多条数据 connect.executemany("INSERT INTO {} VALUES(?,?,?,?,?,?,?,?,?,?,?,?,?)".format(self.tableName), self.data) #for i in range(len(self.data)): # connect.execute("INSERT INTO university VALUES(?,?,?,?,?,?,?,?,?,?,?,?,?)", data[i]) # 提交事务 connect.commit() # 断开连接 connect.close() def getAllData(self): ‘‘‘ function: 得到数据库文件中的所有数据 ‘‘‘ # 连接数据库 connect = sqlite3.connect(self.dbName) # 创建游标对象 cursor = connect.cursor() # 读取数据 cursor.execute("SELECT * FROM {}".format(self.tableName)) dataList = cursor.fetchall() # 断开连接 connect.close() return dataList def searchData(self, conditions, IfPrint=True): ‘‘‘ function: 查找特定的数据 ‘‘‘ # 连接数据库 connect = sqlite3.connect(self.dbName) # 创建游标 cursor = connect.cursor() # 查找数据 cursor.execute("SELECT * FROM {} WHERE {}".format(self.tableName, conditions)) data = cursor.fetchall() # 关闭游标 cursor.close() # 断开数据库连接 connect.close() if IfPrint: self.printData(data) return data def deleteData(self, conditions): ‘‘‘ function: 删除数据库中的数据 ‘‘‘ # 连接数据库 connect = sqlite3.connect(self.dbName) # 插入多条数据 connect.execute("DELETE FROM {} WHERE {}".format(self.tableName, conditions)) # 提交事务 connect.commit() # 断开连接 connect.close() def printData(self, data): print("{1:{0}^3}{2:{0}<11}{3:{0}<4}{4:{0}<4}{5:{0}<5}{6:{0}<5}{7:{0}^5}{8:{0}^5}{9:{0}^5}{10:{0}^5}{11:{0}^5}{12:{0}^6}{13:{0}^5}".format(chr(12288), *self.COLUMNS)) for i in range(len(data)): print("{1:{0}<4.0f}{2:{0}<10}{3:{0}<5}{4:{0}<6}{5:{0}<7}{6:{0}<8}{7:{0}<7.0f}{8:{0}<8}{9:{0}<7.0f}{10:{0}<6.0f}{11:{0}<9.0f}{12:{0}<6.0f}{13:{0}<6.0f}".format(chr(12288), *data[i])) def run(self): try: # 创建数据库文件 self.creatTable() print(">>> 数据库创建成功!") # 保存数据到数据库 self.insertDataS() print(">>> 表创建、数据插入成功!") except: print(">>> 数据库已创建!") # 读取所有数据 if self.Read_All: self.printData(self.getAllData()) def get_data(fileName): ‘‘‘ function: 读取获得大学排名的数据 并 将结果返回 ‘‘‘ data = [] # 打开文件 f = open(fileName, ‘r‘, encoding=‘utf-8‘) # 按行读取文件 for line in f.readlines(): # 替换掉其中的换行符和百分号 替换百分号是为了方便之后的排序和运算 line = line.replace(‘\n‘, ‘‘) line = line.replace(‘%‘,‘‘) # 将字符串按照 ‘,‘ 分割为列表 line = line.split(‘,‘) for i in range(len(line)): # 使用 异常处理 避开 出现中文无法转换 的错误 try: # 将空值填充为 0 if line[i] == ‘‘: line[i] = ‘0‘ # 将数字转换为数值 line[i] = eval(line[i]) except: continue data.append(tuple(line)) # EN_columns、CH_columns 分别为 用于数据库创建、数据的格式化输出 EN_columns = "Rank real, University text, Province text, Grade real, SourseQuality real, TrainingResult real, ResearchScale real, ReserchQuality real, TopResult real, TopTalent real, TechnologyService real, TransformationResults real,student real" CH_columns = ["排名", "学校名称", "省市", "总分", "生涯质量", "培养结果", "科研规模", "科研质量", "顶尖成果", "顶尖人才", "科技服务", "成果转化","学生国际化"] return data[1:], EN_columns, CH_columns if __name__ == "__main__": # =================== 设置和得到基本数据 =================== fileName = "F:\\360\\35db1.csv" data, EN_columns, CH_columns = get_data(fileName) dbName = "db35university.db" tableName = "university" # ================= 创建一个SQL_method对象 ================== SQL =SQL_method(dbName, tableName, data, EN_columns, CH_columns, False) # =================== 创建数据库并保存数据 =================== SQL.run() # =================== 在数据库中查找数据项 =================== # 查找记录并输出结果 print(">>> 查找数据项(University = ‘广东技术师范学院‘) :") SQL.searchData("University = ‘广东技术师范学院‘", True) # ================= 在数据库中筛选数据项并排序 ================== # 将选取广东省的数据 并 对成果转化大小排序 print("\n>>> 筛选数据项并按照成果转化排序(Province = ‘广东省‘) :") SQL.searchData("Province = ‘广东省‘ ORDER BY TransformationResults", True) # =============== 对数据库中的数据进行重新排序操作 ================ # 定义权值 Weight = [0.3, 0.15, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05, 0.15] value, sum = [], 0 # 获取 Province = ‘广东省‘ 的所有数据 sample = SQL.searchData("Province = ‘广东省‘", False) # 按照权值求出各个大学的总得分 for i in range(len(sample)): for j in range(len(Weight)): sum += sample[i][4+j] * Weight[j] value.append(sum) sum = 0 university = [university[1] for university in sample] uv, tmp = [], [] for i in range(len(university)): tmp.append(university[i]) tmp.append(value[i]) uv.append(tmp) tmp = [] df = DataFrame(uv, columns=list(("大学", "总分"))) df = df.sort_values(‘总分‘) df.index = [i for i in range(1, len(uv)+1)] # 输出结果 print("\n>>> 筛选【广东省】的大学并通过权值运算后重排名的结果:\n", df) # ===================== 在数据库中删除数据项 ===================== SQL.deleteData("Province = ‘北京市‘") SQL.deleteData("Province = ‘广东省‘") SQL.deleteData("Province = ‘山东省‘") SQL.deleteData("Province = ‘山西省‘") SQL.deleteData("Province = ‘江西省‘") SQL.deleteData("Province = ‘河南省‘") print("\n>>> 数据删除成功!") SQL.printData(SQL.getAllData()) # ====================== 在数据库中删除表 ======================== SQL.destroyTable() print(" 表删除成功!"
标签:isp 连接 sea 序列 ram lis 表示 arc 学校
原文地址:https://www.cnblogs.com/Glzt/p/12925623.html