标签:结束 play div inline tutorial href shu down ongl
\(a+b\)
$a+b$ //左边显示
$$a+b$$ //居中显示
\(\vec A\)
$\vec A$
\(x^{y^z} = (1+e^x)^{-2xy^w}\)
$x^{y^z} = (1+e^x)^{-2xy^w}$
\(f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon \{3, 4, 5\}\)
$f(x, y) = x^2 + y^2, x \epsilon [0, 100], y \epsilon \{3, 4, 5\}$
\((\frac {x} {y})^2 , \left(\frac {x} {y} \right)^2\)
$(\frac {x} {y})^2 , \left(\frac {x} {y} \right)^2$
\(\left. \frac{du}{dx} \right| _{x=0}\)
$\left. \frac{du}{dx} \right| _{x=0}$
\(\frac{1}{2x+1} , {{1} \over {2x+1}}\)
$\frac{1}{2x+1} , {{1} \over {2x+1}}$
\(\sqrt[3]{9}, \sqrt{16}\)
$\sqrt[3]{9}, \sqrt{16}$
\(f(x_1,x_2,\ldots,x_n) = x_1^2+x_2^2+\cdots+x_n^2\)
$f(x_1,x_2,\ldots,x_n) = x_1^2+x_2^2+\cdots+x_n^2$
\(\vec a \cdot \vec b = 0\)
$\vec a \cdot \vec b = 0$
\(\int_0^1x^2dx\)
$\int_0^1x^2dx$
\(\lim_{n\rightarrow+\infty}\frac{1}{n(n+1)}\)
$\lim_{n\rightarrow+\infty}\frac{1}{n(n+1)}$
\(\sum_1^n\frac{1}{x^2}, \prod_{i=0}^n{1 \over {x^2}}\)
$\sum_1^n\frac{1}{x^2}, \prod_{i=0}^n{1 \over {x^2}}$
\(\alpha \beta \gamma \Gamma \delta \Delta \epsilon \varepsilon \zeta \eta \theta \Theta \vartheta \iota \kappa \lambda \Lambda \mu \nu \xi \Xi \pi \Pi \varpi \rho \varrho \sigma \Sigma \varsigma \tau \upsilon \Upsilon \phi \Phi \varphi \chi \psi \Psi \Omega \omega\)
$\alpha \beta \gamma \Gamma \delta \Delta \epsilon \varepsilon \zeta \eta \theta \Theta \vartheta \iota \kappa \lambda \Lambda \mu \nu \xi \Xi \pi \Pi \varpi \rho \varrho \sigma \Sigma \varsigma \tau \upsilon \Upsilon \phi \Phi \varphi \chi \psi \Psi \Omega \omega$
显示 | 命令 | 显示 | 命令 |
---|---|---|---|
\(\alpha\) | \alpha | \(\beta\) | \beta |
\(\gamma\) | \gamma | \(\delta\) | \delta |
\(\epsilon\) | \epsilon | \(\zeta\) | \zeta |
\(\eta\) | \eta | \(\theta\) | \theta |
\(\iota\) | \iota | \(\kappa\) | \kappa |
\(\lambda\) | \lambda | \(\mu\) | \mu |
\(\nu\) | \nu | \(\xi\) | \xi |
\(\pi\) | \pi | \(\rho\) | \rho |
\(\sigma\) | \sigma | \(\tau\) | \tau |
\(\upsilon\) | \upsilon | \(\phi\) | \phi |
\(\chi\) | \chi | \(\psi\) | \psi |
\(\omega\) | \omega |
\(\# \$ \%\&\_\{\}\)
$\# \$ \%\&\_\{\}$
\(\pm \times \div \mid\)
$\pm \times \div \mid$
\(\cdot \circ \ast \bigodot \bigotimes \leq \geq \neq \approx \equiv \sum \prod \coprod\)
$\cdot \circ \ast \bigodot \bigotimes \leq \geq \neq \approx \equiv \sum \prod \coprod$
\(\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup\)
$\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup$
\(\log \lg \ln\)
$\log \lg \ln$
\(\bot \angle 30^\circ \sin \cos \tan \cot \sec \csc\)
$\bot \angle 30^\circ \sin \cos \tan \cot \sec \csc$
\(y{\prime}x \int \iint \iiint \oint \lim \infty \nabla\)
$y{\prime}x \int \iint \iiint \oint \lim \infty \nabla$
\(\because \therefore \forall \exists\)
$\because \therefore \forall \exists$
\(\uparrow \downarrow \leftarrow \rightarrow \Uparrow \Downarrow \Leftarrow \Rightarrow \longleftarrow \longrightarrow \Longleftarrow \Longrightarrow\)
$\uparrow \downarrow \leftarrow \rightarrow \Uparrow \Downarrow \Leftarrow \Rightarrow \longleftarrow \longrightarrow \Longleftarrow \Longrightarrow$
\(\overline{a+b+c+d} \underline{a+b+c+d} \overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} \hat{y} \check{y} \breve{y}\)
$\overline{a+b+c+d}
\underline{a+b+c+d}
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}
\hat{y} \check{y} \breve{y}$
\( \begin{matrix} 1&0&0\0&1&0\0&0&1\\end{matrix} \)
$
\begin{matrix}
1&0&0\0&1&0\0&0&1\\end{matrix}
$
在起始、结束标记处用下列词替换 matrix
pmatrix :小括号边框
bmatrix :中括号边框
Bmatrix :大括号边框
vmatrix :单竖线边框
Vmatrix :双竖线边框
$$
\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\{\vdots}&{\vdots}&{\ddots}&{\vdots}\{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\end{bmatrix}
$$
$$
\begin{array}{c|lll}
{↓}&{a}&{b}&{c}\\hline
{R_1}&{c}&{b}&{a}\{R_2}&{b}&{c}&{c}\\end{array}
$$
$$
\begin{cases}
a_1x+b_1y+c_1z=d_1\a_2x+b_2y+c_2z=d_2\a_3x+b_3y+c_3z=d_3\\end{cases}
$$
https://www.jianshu.com/p/a0aa94ef8ab2
https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
https://blog.csdn.net/xingxinmanong/article/details/78528791
标签:结束 play div inline tutorial href shu down ongl
原文地址:https://www.cnblogs.com/kingBook/p/12942750.html