标签:strong == 记录 有一个 ret 技术 inf ref div
有一个 \(n\times m\) 的矩阵 \(a(1\le a_{i,j}\le p)\),求从起点 \((1,1)\) 出发依次遍历值为 \(1\to p\) 的矩阵单元的最短路径曼哈顿距离。保证满足 \(a_{i,j}=p\) 的 \((i,j)\) 唯一。
数据范围:\(1\le n,m\le 300\),\(1\le p\le n\cdot m\)。
先记录 \(\tt vector\) 数组 \(w\),\(w_t\) 表示 \(a_{i,j}=t\) 的位置集合。
\(w_t\) 的每个元素有三个属性:\(x,y,g\)。\(x\) 和 \(y\) 是位置坐标,\(g\) 是出发遍历矩阵值 \(1\to t\) 后到 \((x,y)\) 的最短路径长度。
暴力做法:从 \(w_{i-1}\) 的所有 \(g\) 值递推 \(w_i\) 的所有 \(g\) 值:
时间复杂度 \(\Theta\left(\sum_{i\in[2,p]}|w_{i-1}|\cdot |w_i|\right)\le\Theta(n^2m^2)\)。
比如 \(n=300,m=300,p=2\),矩阵一半是 \(1\) 一半是 \(2\)。
这题的优化是真的巧,反正我比赛时没想到。
考虑以下情况:
总的时间复杂度是:
同时满足 \(\sum_{i=1}^p |w_i|=n\cdot m\),根据柯西不等式:
所以 \(\sum_{i=2}^p|w_{i-1}|\cdot |w_i|\le n\cdot m\times\sqrt{n\cdot m}\)。
复杂为 \(\Theta(n\cdot m\sqrt{n\cdot m})\) 可以通过。
但是如果 \(\exists i\in[2,p]:|w_{i-1}|\cdot|w_i|>n\cdot m\) 怎么办呢?
可以套个 \(\Theta(V)\) 的多源无向无权图最短路模板 \(\tt Bfs\)。
所以此时单次递推的时间复杂度也是 \(\Theta(n\cdot m)\)。
这样的单次递推与 \(|w_{i-1}|\cdot|w_i|=n\cdot m\) 相比:
一次递推时间复杂度相等。
由于对于这个 \(i\) 的 \(|w_{i-1}|\cdot|w_i|\) 大,所以对于其他 \(i\) 的 \(|w_{i-1}|\cdot|w_i|\) 较小。所以总时间复杂度小。
所以这样优化后总时间复杂度 \(\le \Theta(n\cdot m\sqrt{n\cdot m})\)。可以通过。
//Data
const int N=3e2;
int n,m,k,a[N+7][N+7];
struct node{
int x,y,g;
node(int X=0,int Y=0,int G=0){x=X,y=Y,g=G;}
};
vector<node> w[N*N+7];
//Bfs
int d[N+7][N+7];
int tx[]={0,0,-1,1},ty[]={-1,1,0,0};
int ok(int x,int y){return 1<=x&&x<=n&&1<=y&&y<=m;}
void Bfs(vector<node>&s){ //多源无向无权图最短路模板 Bfs。
vector<node> q;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) d[i][j]=inf;
int sc=-1;
q.pb(s[++sc]);
for(int i=0;i<sz(q);i++){
node v=q[i];
while(sc+1<sz(s)&&s[sc+1].g<=v.g) q.pb(s[++sc]);
for(int t=0;t<4;t++){
node u=node(v.x+tx[t],v.y+ty[t]);
if(ok(u.x,u.y)&&v.g+1<d[u.x][u.y]) d[u.x][u.y]=u.g=v.g+1,q.pb(u);
}
}
}
//Main
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
if(a[i][j]==1) w[a[i][j]].pb(node(i,j,i+j-2));
else w[a[i][j]].pb(node(i,j,inf));
}
for(int key=2;key<=k;key++){
if(sz(w[key-1])*sz(w[key])<=n*m){
for(node&u:w[key]) for(node v:w[key-1])
u.g=min(u.g,v.g+abs(u.x-v.x)+abs(u.y-v.y));
} else {
vector<node> s;
for(node v:w[key-1]) s.pb(v);
Bfs(s);
for(node&u:w[key]) u.g=d[u.x][u.y];
}
}
printf("%d\n",w[k][0].g);
return 0;
}
祝大家学习愉快!
标签:strong == 记录 有一个 ret 技术 inf ref div
原文地址:https://www.cnblogs.com/Wendigo/p/12944085.html