标签:front 图的存储 拓扑 复杂度 == 邻接 邻接矩阵 ops 序列
树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。
(1) 邻接矩阵:g[a][b] 存储边a->b
(2) 邻接表:
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点 int h[N], e[N], ne[N], idx; // 添加一条边a->b void add(int a, int b) { e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ; } // 初始化 idx = 0; memset(h, -1, sizeof h);
时间复杂度 O(n+m), n 表示点数,m 表示边数
int dfs(int u) { st[u] = true; // st[u] 表示点u已经被遍历过 for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) dfs(j); } }
queue<int> q; st[1] = true; // 表示1号点已经被遍历过 q.push(1); while (q.size()) { int t = q.front(); q.pop(); for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) { st[j] = true; // 表示点j已经被遍历过 q.push(j); } } }
bool topsort() { int hh = 0, tt = -1; // d[i] 存储点i的入度 for (int i = 1; i <= n; i ++ ) if (!d[i]) q[ ++ tt] = i; while (hh <= tt) { int t = q[hh ++ ]; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (-- d[j] == 0) q[ ++ tt] = j; } } // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。 return tt == n - 1; }
标签:front 图的存储 拓扑 复杂度 == 邻接 邻接矩阵 ops 序列
原文地址:https://www.cnblogs.com/kukudewen/p/12950452.html