码迷,mamicode.com
首页 > 其他好文 > 详细

DancingLinks刷题集

时间:2014-11-08 02:00:12      阅读:269      评论:0      收藏:0      [点我收藏+]

标签:style   blog   io   color   ar   sp   for   div   on   

 HDU 3663 Power Stations 精确覆盖 

题意:每个城市i有xi->yi天可以成为发射站,发射站覆盖范围为与该站有一条边链接的城市。

同时,每个每天城市必须且只能被一个发射站覆盖

天数D<=5。 每个城市的发射站关闭后就不再开启。即只能选择一段区间。

问若能做到,则输出每个城市开启时间与关闭时间

否则输出No solution

做法:

1.天数城市可独立看待,故每个城市每天看做一列。

2.在此区间内取一段子区间,注意到D很小,可枚举起点时刻终点时刻,每个城市每个方案作为一行。

3.对每个方案可覆盖到的城市及各天,则对该行该列设1

4.为解决每个城市只能取一段区间,则对每个城市设置一个新的列,该城市所有方案在该列设1,使不重复选择。

5.注意设置每个城市发射站未开启的方案行。因为不开是可行的。6。

注意多输出一行空行

//2014.11.7

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

#define N 1004
#define M 850
#define T 820000
#define INF 0x3f3f3f3f
vector<int>vec[66];
int dir[10];
bool g[66][66];
vector<int>v;
struct Day{
    int x,y;
    Day(){};
    Day(int xx, int yy): x(xx), y(yy){};
}p[66], ans[66], rec[N];
int yingying, f[N];
void dabiao(){
    int i;
    dir[0] = 0;
    for(i = 1; i <= 5; i++) dir[i] = i + dir[i-1];
}
struct DLX{
    int L[T], R[T], U[T], D[T];
    int head[N];
    int cnt[M], col[T], row[T], id, n, m;

    void init(int nn, int mm){
        this->n = nn;
        this->m = mm;

        int i;
        for(i = 0; i <= m; i++){
            D[i] = U[i] = i;
            L[i] = i-1;    R[i] = i + 1;
        }
        id = m + 1;
        R[m] = 0;    L[0] = m;
        memset(cnt, 0, sizeof(cnt));
        memset(head, -1, sizeof(head));

    }
    void add(int r, int c){
        D[id] =  c;    U[id] = U[c];
        D[U[c]] = id;    U[c]  = id;

        if(head[r] < 0 ){
            head[r] = L[id] = R[id] = id;
        }
        else {
            L[id] = head[r];    R[id] = R[head[r]];
            L[R[head[r]]] =id;    R[head[r]] = id;
            head[r] = id;
        }
        cnt[c] ++;    col[id] = c;    row[id] =r;
        id ++;
    }
    void del(int x){
        int i, j;
        L[R[x]] = L[x];    R[L[x]] = R[x];
        for(i = D[x]; i != x; i = D[i]){
            for(j = R[i]; j != i; j = R[j]){
                cnt[col[j]] --;
                U[D[j]] = U[j];    D[U[j]] = D[j];
            }
        }
    }

    void resume(int x){
        int i, j;
        for(i = U[x]; i != x; i = U[i]){
            for(j = L[i]; j != i; j = L[j]){
                cnt[col[j]] ++;
                D[U[j]] = j;    U[D[j]] = j;
            }
        }
        L[R[x]] = x;    R[L[x]] = x;
    }


    bool dfs(){
        if(R[0] == 0) return true;
        int idx , temp, i, j;
        temp = INF;
        for(i = R[0]; i != 0; i = R[i]){
            if(cnt[i] < temp){
                temp = cnt[i];
                idx = i;
            }
        }
        if(temp == 0) return false;

        del(idx);
        for(i = D[idx]; i != idx; i = D[i]){
            Day tttt = ans[f[row[i]]];
            ans[f[row[i]]] = rec[row[i]];
            for(j = R[i]; j != i; j = R[j]){
                del(col[j]);
            }
            if(dfs()) return true;
            for(j = L[i]; j != i; j = L[j]){
                resume(col[j]);
            }
            ans[f[row[i]]] = tttt;
        }
        resume(idx);
        return false;
    }
}dlx;




bool gao(int n, int d){
    int sum = 0, i, j, k, t, tt;
    for(i = 1; i <= n; i++){
        sum += dir[p[i].y - p[i].x];
    }

    dlx.init(sum, n * d + n);
    sum = 0;
    for(i = 1; i <= n; i++){
        for(j = p[i].x; j <= p[i].y; j++){
            for(k = j; k <= p[i].y; k++){
                ++sum;
                for(tt = 0; tt < vec[i].size(); tt++){
                    for(t = j; t <= k; t++){
                        dlx.add(sum, (vec[i][tt]-1)*d+t);
                    }
                }
                dlx.add(sum, n * d +i);
                rec[sum] = Day(j, k);
                f[sum] = i;
            }
        }
    }
    for(i = 1; i <= n; i ++){
        dlx.add(++sum, n * d + i);
        f[sum] = n + 1;
    }

    return dlx.dfs();

}


int main(void){
    int n, m, d, i, j, x, y;
    dabiao();
    while(scanf("%d%d%d", &n, &m, &d) != EOF){
        fill(vec, vec+66, vector<int>() );
        memset(g, false, sizeof(g));
        while(m--){
            scanf("%d%d", &x, &y);
            if(g[x][y]) continue;
            g[x][y] = g[y][x] = true;
            vec[x].push_back(y);    vec[y].push_back(x);
        }
        for(i = 1; i <= n; i++){
            scanf("%d%d", &p[i].x, &p[i].y);
            vec[i].push_back(i);
            ans[i] = Day(0, 0);
        }
        yingying = n;
        if(gao(n, d)){
            for(i = 1; i <= n; i++){
                printf("%d %d\n", ans[i].x, ans[i].y);
            }
        }
        else printf("No solution\n");
    printf("\n");

    }
    return 0;
}

 

HDU 2828 Lamp

重复覆盖+判断冲突 

题意:有N盏灯可以由M个开关控制,对于第i盏灯,当条件A|| B || C。。。满足则灯亮,条件X为j开关OFF或ON状态。

问开关处于何种状态时,灯是全开的。SPJ

做法:

建图的第一部分很简单,以N盏灯为列,每个开关的开/关状态各为一行,对处于此状态为亮的灯为1.

然后是开关的状态只能取一个的解决方法。对于每个开关状态on / off是否采用,设置vis数组,若dfs时对应的另一个状态已经采用,则此状态非法,不搜。

以上,可解决。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

#define N 1004
#define T 1000004
#define INF 0x3f3f3f3f

int f[N][N>>1], ans[504];
vector<int>v;
int M ;
struct DLX{
    int r[T], l[T], u[T], d[T];
    int cnt[N], col[T], row[N], head[N];
    bool vis[N];
    int n, id;
    void init(int n){
        this->n = n;
        int i;
        for(i = 0; i <= n; i++){
            d[i] = u[i] = i;
            l[i] = i - 1;    r[i] = i + 1;
        }
        id = n + 1;
        r[n] = 0;    l[0] = n;
        memset(cnt, 0, sizeof(cnt));
        memset(vis, false, sizeof(vis));
        memset(head, -1, sizeof(head));
    }
    void add(int R, int C){
        d[id] =  C;    u[id] = u[C];    
        d[u[C]] = id;    u[C]  = id;

        if(head[R] < 0 ){
            head[R] = l[id] = r[id] = id;
        }
        else {
            l[id] = head[R];    r[id] = r[head[R]];
            l[r[head[R]]] =id;    r[head[R]] = id;
            head[R] = id;
        }
        cnt[C] ++;    col[id] = C;    row[id] =R;
        id ++;
    }
    void remove(int x){
        int i;
        for(i = u[x]; i != x; i = u[i]){
            l[r[i]] = l[i];
            r[l[i]] = r[i];
        }
    }

    void resume(int x){
        int i;
        for(i = d[x]; i != x; i = d[i]){
            l[r[i]] = i;    r[l[i]] = i;
        }
    }
    bool dfs(){
        if(r[0] == 0) return true;

        int i, c = r[0], j;
        for(i = r[0]; i != 0; i = r[i]){
            if(cnt[i] <cnt[c]) c = i;
        }
        for(i = d[c]; i != c; i = d[i]){
            if(vis[row[i]^1] ) continue;
            vis[row[i]] = true;
            remove(i);
            for(j = r[i]; j != i; j = r[j]){
                remove(j);
            }

            if(dfs()) return true;
            for(j = l[i]; j != i; j = l[j])                    resume(j);
                resume(j);
            resume(i);        vis[row[i]] = false;
        }
        return false;

    }

}dlx;

bool gao(int n, int m){
    dlx.init(n);
    m <<= 1;

    int i, j;
    for(i = 0; i < m; i++){
        for(j = 1; j <= n; j++){
            if(f[i][j]){
                dlx.add(i, j);
            }
        }
    }
    return dlx.dfs();
}


int main(){
    int n, m, i, k, x;
    char op[10];
    while(scanf("%d%d", &n, &m) != EOF){
        memset(f, 0, sizeof(f));
        M = n;    
        for(i = 1; i <= n; i++){
            scanf("%d", &k);
            while(k--){
                scanf("%d%s", &x, op);
                x--;
                if(op[1] == N){
                    f[x<<1][i] = 1; 
                }
                else f[x<<1|1][i] = 1;
            }
        
        }

        if(gao(n, m)){
            for(i = 0; i < m; i++){
                printf("%s%c", dlx.vis[i<<1] ? "ON": "OFF", i == m - 1? \n :  );
            }
        }
        else printf("-1\n");
    }
    return 0;
}

 

DancingLinks刷题集

标签:style   blog   io   color   ar   sp   for   div   on   

原文地址:http://www.cnblogs.com/bbbbbq/p/4082627.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!