码迷,mamicode.com
首页 > 其他好文 > 详细

13-垃圾邮件分类2

时间:2020-05-27 13:40:14      阅读:82      评论:0      收藏:0      [点我收藏+]

标签:ann   精确   向量   idf   https   技术   读取   ati   cto   

1.读取

技术图片

 

 

2.数据预处理

技术图片

 

 

3.数据划分—训练集和测试集数据划分

技术图片

 

 

from sklearn.model_selection import train_test_split

x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

4.文本特征提取

sklearn.feature_extraction.text.CountVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

sklearn.feature_extraction.text.TfidfVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf2 = TfidfVectorizer()

观察邮件与向量的关系

向量还原为邮件

技术图片

 

 

4.模型选择

from sklearn.naive_bayes import GaussianNB

from sklearn.naive_bayes import MultinomialNB

说明为什么选择这个模型?

技术图片

 

 

5.模型评价:混淆矩阵,分类报告

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_predict)

说明混淆矩阵的含义

from sklearn.metrics import classification_report

说明准确率、精确率、召回率、F值分别代表的意义 

技术图片

 

 

 

6.比较与总结

如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

CountVectorizer只考虑每个单词出现的频率;然后构成一个特征矩阵,每一行表示一个训练文本的词频统计结果。TfidfVectorizer除了考量某词汇在本文本出现的频率,还包含这个词汇的其它文本的数量。相比之下,训练文本的数量越多,TfidfVectorizer这种特征量化方式就更有优势,而且TfidfVectorizer可以削减高频没有意义的词汇,应用于实际更有意义,实际效果也会更好。

技术图片

 

 

技术图片

13-垃圾邮件分类2

标签:ann   精确   向量   idf   https   技术   读取   ati   cto   

原文地址:https://www.cnblogs.com/dianshuizheng/p/12972329.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!