码迷,mamicode.com
首页 > 其他好文 > 详细

974. Subarray Sums Divisible by K. 前缀和、同余定理

时间:2020-05-28 00:53:15      阅读:54      评论:0      收藏:0      [点我收藏+]

标签:前缀   https   int   sum   xpl   ref   ems   前缀和   inpu   

Given an array A of integers, return the number of (contiguous, non-empty) subarrays that have a sum divisible by K.

Example 1:

Input: A = [4,5,0,-2,-3,1], K = 5
Output: 7
Explanation: There are 7 subarrays with a sum divisible by K = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/subarray-sums-divisible-by-k

1.负数求余
Sum = ((Sum % Mod) + Mod) % Mod;
2.同余定理应用
子数组和能否被K整除 转化为
(preSum[j] - preSum[i-1]) mod K == 0
根据同余定理,转化为
preSum[j] mod K == preSum[i-1] mod K

class Solution {
public:
    int subarraysDivByK(vector<int>& A, int K) {
        map <int,int> Map = {{0 , 1}};  //预置边界情况,第0项为1 
        int ans = 0;
        int preSum = 0;
        for (int elem: A){
            preSum += elem;
            preSum = ((preSum % K) + K) % K;     //负数取模的处理
            ans += Map[preSum];
            Map[preSum]++;
        }

        return ans;
    }
};

974. Subarray Sums Divisible by K. 前缀和、同余定理

标签:前缀   https   int   sum   xpl   ref   ems   前缀和   inpu   

原文地址:https://www.cnblogs.com/xgbt/p/12977519.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!