标签:vecotr 拓展 leetcode input his 入栈 problems 思路 声明
Given n non-negative integers representing the histogram‘s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
The largest rectangle is shown in the shaded area, which has area = 10 unit.
Example:
Input: [2,1,5,6,2,3]
Output: 10
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram
1.vecotr几个声明
vector <int> vec; //声明一个int型向量
vector <int> vec(5); //声明一个初始大小为5的int向量
vector <int> vec(10, 1); //声明一个初始大小为10且值都是1的向量
2.解题思路
遍历每个木板,对每一块木板分别向左向右拓展,知道遇见比自身低的木板,然后用高度?宽度。
使用栈进行求解,从左到右遍历,栈空则入栈,若栈非空,检查栈顶,若栈顶大于等于自身则出栈,直至栈空或者栈顶小于自身。此时栈顶元素的下标即为向左可拓展的最大下标,向右同理。
3.两次遍历改一次遍历
从左向右遍历,出栈时,当前元素下标即为出栈元素的向右可拓展的最大下标。
//2次遍历
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int n = heights.size();
vector <int> left(n),right(n);
int ans = 0;
stack <int> st;
for (int i = 0;i < n; i++){
while ( !st.empty() && heights[i] <= heights[st.top()] ){
st.pop();
}
left[i] = st.empty() ? -1 : st.top();
st.push(i);
}
while (!st.empty()) st.pop();
for (int i = n-1; i >=0 ; i--){
while ( !st.empty() && heights[i] <= heights[st.top()] ){
st.pop();
}
right[i] = st.empty() ? n : st.top();
st.push(i);
}
for (int i = 0; i < n; i++){
ans = max( ans, heights[i] * (right[i] - left[i] - 1));
}
return ans;
}
};
//1次遍历
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int n = heights.size();
vector <int> left(n,0),right(n,n);
int ans = 0;
stack <int> st;
for (int i = 0;i < n; i++){
while (!st.empty() && heights[st.top()] >= heights[i]){
right[st.top()] = i;
st.pop();
}
left[i] = st.empty() ? -1 : st.top();
st.push(i);
}
for (int i = 0; i < n; i++){
ans = max ( ans, heights[i] * (right[i] - left[i] -1));
}
return ans;
}
};
84. Largest Rectangle in Histogram. 单调栈
标签:vecotr 拓展 leetcode input his 入栈 problems 思路 声明
原文地址:https://www.cnblogs.com/xgbt/p/12995580.html