码迷,mamicode.com
首页 > 其他好文 > 详细

矩阵快速求幂

时间:2020-05-31 21:47:39      阅读:70      评论:0      收藏:0      [点我收藏+]

标签:位置   快速   相加   int   lan   +=   大小   clu   for   

矩阵快速求幂

在只使用标准库的情况下,c++没有现成的处理矩阵的标准库,所以矩阵的运算就比较麻烦,尤其是矩阵的乘法

加减法都可以对应位置做加减,乘法的运算相对比较复杂,幂运算又会带来的大量的乘法运算,所以这里记录一种

矩阵快速求幂的方法。这种方法可以将运算降低至指数次,原理是这样的:

1.矩阵A的m次方,先把m分解成二进制数,然后二进制的对应为转换为十进制,就可以将m分解为2的幂指数相加,例如:10 = 8 + 2; 22 = 16 + 4 + 2;

2.按照2的幂指数从小到大依次开方,然后二进制数对应为1的位数相加,就可以得到答案了

接下来是代码,这里用存放链表的链表来表示矩阵:

#include <iostream>
#include <vector> 
using namespace std;

typedef vector<int> vec;
typedef vector<vec> mat;

//矩阵做乘法 
mat mul(mat &A, mat &B){
    //生成一个大小为A.size * B[0].size 的矩阵C 
    mat C(A.size(), vec(B[0].size()));    
    for (int i=0; i<A.size(); i++){
        for (int k=0; k<B.size(); k++){
            for (int j=0; j<B[0].size(); j++){
                C[i][j] += A[i][k] * B[k][j];
            }
        }
    }
    return C;
}

//矩阵快速求幂, n为指数 
mat mpow(mat A, int n){
    mat B(A.size(), vec(A.size()));
    for (int i=0; i<A.size(); i++){
        B[i][i] = 1;
    }
    
    while (n>0){
        if (n&1) B = mul(B, A);
        A = mul(A, A);
        n >>= 1;
    }
    return B;
}


int main(){
    
    int n;
    cin>>n;
    //利用矩阵求幂求斐波那契数列
    mat A(2, vec(2));
    A[0][0] = 1; A[0][1] = 1; A[1][0] = 1; A[1][1] = 0;
    A = mpow(A, n);
    cout<<A[1][0]<<endl; 
    return 0;
}

矩阵快速求幂

标签:位置   快速   相加   int   lan   +=   大小   clu   for   

原文地址:https://www.cnblogs.com/sakurapiggy/p/13021242.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!