码迷,mamicode.com
首页 > 其他好文 > 详细

kafka

时间:2020-06-02 11:14:14      阅读:69      评论:0      收藏:0      [点我收藏+]

标签:message   自增   语义   大于   之间   并且   大于等于   roman   设置   

一、kafka的基础架构

                    技术图片 

1)Producer :消息生产者,就是向kafka broker发消息的客户端;
2)Consumer :消息消费者,向kafka broker取消息的客户端;
3)Consumer Group (CG):消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
4)Broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。
5)Topic :可以理解为一个队列,生产者和消费者面向的都是一个topic;
6)Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列;
7)Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个分区都有若干个副本,一个leader和若干个follower。
8)leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是leader。
9)follower:每个分区多个副本中的“从”,实时从leader中同步数据,保持和leader数据的同步。leader发生故障时,某个follower会成为新的follower。

 

二、kafka的文件存储机制

                      技术图片

  由于生产者生产的消息会不断追加到log文件末尾,为防止log文件过大导致数据定位效率低下,Kafka采取了分片索引机制,将每个partition分为多个segment。每个segment对应两个文件——“.index”文件和“.log”(默认最大为1g可配)文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,first这个topic有三个分区,则其对应的文件夹为first-0,first-1,first-2。

  index和log文件以当前segment的第一条消息的offset命名。下图为index文件和log文件的结构示意图。

                   技术图片

  “.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。

 

三、kafka生产者

1,kafka集群分区的原因:

  (1)方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;

  (2)可以提高并发,因为可以以Partition为单位读写了。

2,生产者分区的原则:

  (1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;

  (2)没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;

  (3)既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。

3,ISR:

  Leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给follower发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。

4,Kafka的消息可靠性保障ack:

  0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据

  1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据

  -1(all):producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。无法保证幂等性,故而用Exactly Once:idempotent + at least once = exactly once

5,Kafka的在0.11.0版本之后是如何解决消息的幂等性(Exactly Once):

  为了实现Producer的幂等语义,Kafka引入了Producer ID(即PID)和Sequence Number。每个新的Producer在初始化的时候会被分配一个唯一的PID,该PID对用户完全透明而不会暴露给用户。

  对于每个PID,该Producer发送数据的每个<Topic, Partition>都对应一个从0开始单调递增的Sequence Number

  类似地,Broker端也会为每个<PID, Topic, Partition>维护一个序号并且每次Commit一条消息时将其对应序号递增。对于接收的每条消息,如果其序号比Broker维护的序号(即最后一次Commit的消息的序号)大一,则Broker会接受它,否则将其丢弃:

如果消息序号比Broker维护的序号大一以上,说明中间有数据尚未写入,也即乱序,此时Broker拒绝该消息, 
    Producer抛出InvalidSequenceNumber
如果消息序号小于等于Broker维护的序号,说明该消息已被保存,即为重复消息,Broker直接丢弃该消息,
    Producer抛出DuplicateSequenceNumber

  上述设计解决了0.11.0.0之前版本中的两个问题:

Broker保存消息后,发送ACK前宕机,Producer认为消息未发送成功并重试,造成数据重复 前一条消息发送失败,后一条消息发送成功,前一条消息重试后成功,造成数据乱序

  使用时,只需将enable.idempotence属性设置为truekafka自动将acks属性设为-1。

6,故障处理细节

        技术图片

(1)follower故障

  follower发生故障后会被临时踢出ISR(),待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该PartitionHW,即follower追上leader之后,就可以重新加入ISR了。

(2)leader故障

  leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。

  注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

 

kafka

标签:message   自增   语义   大于   之间   并且   大于等于   roman   设置   

原文地址:https://www.cnblogs.com/bbgs-xc/p/13029591.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!