标签:def key 为什么 oat 数组下标 length access next post
HashMap基于Map接口实现,元素以键值对的方式存储,并允许使用null键和null值,但只能有一个键作为null,因为key不允许重复,另外HashMap不能保证放入元素的数据,它是无序的,和放入的顺序并不能相同,HashMap是线程不安全的。
public class HashMap<K,V>extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //默认初始化大小 16
static final float DEFAULT_LOAD_FACTOR = 0.75f; //负载因子0.75
static final Entry<?,?>[] EMPTY_TABLE = {}; //初始化的默认数组
transient int size; //HashMap中元素的数量
int threshold; //判断是否需要调整HashMap的容量
HashMap有数组和链表来实现对数据的存储,HashMap采用Entry数组来存储key-value对,每一个键值对组成了一个Entry实体,Entry类实际上是一个单向的链表结构,它具有Next指针,可以链接下一个Entry实体,以次来解决Hash冲突的问题。
数组存储区间是连续的,占用内存严重,故空间复杂的很大。但数组的二分查找时间复杂度小,为O(1);数组的特点是:寻址容易,插入和删除困难;
链表存储区间离散,占用内存比较宽松,故空间复杂度小,但时间复杂度很大,达 O(N) 。链表的特点是:寻址困难,插入和删除容易。
从上图可以发现数组结构是由数组+链表组成,一个长度为16的数组中,每个元素存储的是一个链表的头节点。那么这些元素是按照什么样的规矩存储到数组中?
通过hash(key.hashCode())%length 获得,也就是元素的key的哈希值对数组长度取模得到。比如上述哈希表中,12%16=12,28%16=12,108%16=12,140%16=12。所以12、28、108以及140都存储在数组下标为12的位置。
取模运算的方式固然简单,但是效率很低。为了实现高效的HashMao算法,HashMap的发明者采用了位运算的方式。
公式: index = HashCode(Key) & (Length - 1)
以值为“book”的key来演示整个过程:
1.计算book的hashcode,结果为十进制的3029737,二进制的101110001110101110 1001。
2.假定HashMap长度是默认的16,计算Length-1的结果为十进制的15,二进制的1111。
3.把以上两个结果做与运算,101110001110101110 1001 & 1111 = 1001,十进制是9,所以 index=9。
可以说,Hash算法最终得到的index结果,完全取决于Key的Hashcode值的最后几位。
这样做不但效果上等同于取模,而且还大大提升了性能。
HashMap里面实现一个静态内部类Entry,其重要的属性有 hash,key,value,next。
HashMap里面用到链式数据结构的一个概念。上面我们提到过Entry类里面有一个next属性,作用是指向下一个Entry。打个比方, 第一个键值对A进来,通过计算其key的hash得到的index=0,记做:Entry[0] = A。一会后又进来一个键值对B,通过计算其index也等于0,现在怎么办?HashMap会这样做:B.next = A,Entry[0] = B,如果又进来C,index也等于0,那么C.next = B,Entry[0] = C;这样我们发现index=0的地方其实存取了A,B,C三个键值对,他们通过next这个属性链接在一起。
比如调用 hashMap.put("apple", 0) ,插入一个Key为“apple"的元素。这时候我们需要利用一个哈希函数来确定Entry的插入位置(index):
假定最后计算出的index是2,那么结果如下:
但是,因为HashMap的长度是有限的,当插入的Entry越来越多时,再完美的Hash函数也难免会出现index冲突的情况。比如下面这样:
可以利用链表来解决。
HashMap数组的每一个元素不止是一个Entry对象,也是一个链表的头节点。每一个Entry对象通过Next指针指向它的下一个Entry节点。当新来的Entry映射到冲突的数组位置时,只需要插入到对应的链表即可:
需要注意的是,新来的Entry节点插入链表时,使用的是“头插法”。
首先会把输入的Key做一次Hash映射,得到对应的index:
由于刚才所说的Hash冲突,同一个位置有可能匹配到多个Entry,这时候就需要顺着对应链表的头节点,一个一个向下来查找。假设我要查找的Key是“apple”:
第一步,查看的是头节点Entry6,Entry6的Key是banana,显然不是我要找的结果。
第二步,查看的是Next节点Entry1,Entry1的Key是apple,正是我要找的结果。
之所以把Entry6放在头节点,是因为HashMap的发明者认为,后插入的Entry被查找的可能性更大。
HashMap的容量是有限的。当经过多次元素插入,使得HashMap达到一定饱和度时,Key映射位置发生冲突的几率会逐渐提高。
这时候,HashMap需要扩展它的长度,也就是进行Resize。
影响发生Resize的因素有两个:
1.Capacity
HashMap的当前长度。HashMap的长度是2的幂。
2.LoadFactor
HashMap负载因子,默认值为0.75f。
衡量HashMap是否进行Resize的条件如下:
*HashMap.Size >= Capacity LoadFactor
HashMap的Rezie不是简单的吧长度扩大,而是经过两个步骤
1.扩容
创建一个新的Entry空数组,长度是原数组的2倍。
2.ReHash
遍历原Entry数组,把所有的Entry重新Hash到新数组。为什么要重新Hash呢?因为长度扩大以后,Hash的规则也随之改变。
回顾一下Hash公式:
index = HashCode(Key) & (Length - 1)
当原数组长度为8时,Hash运算是和111B做与运算;新数组长度为16,Hash运算是和1111B做与运算。Hash结果显然不同。
Resize前的HashMap:
Resize后的HashMap:
ReHash的Java代码如下:
/**
* Transfers all entries from current table to newTable.
*/
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
单线程下执行没有问题,多线程下的Rehash有问题!
假设一个HashMap已经到了Resize的临界点。此时有两个线程A和B,在同一时刻对HashMap进行Put操作:
此时达到Resize条件,两个线程各自进行Rezie的第一步,也就是扩容:
这时候,两个线程都走到了ReHash的步骤。回顾一下ReHash的代码:
假如此时线程B遍历到Entry3对象,刚执行完红框里的这行代码,线程就被挂起。对于线程B来说:
e = Entry3
next = Entry2
这时候线程A畅通无阻地进行着Rehash,当ReHash完成后,结果如下(图中的e和next,代表线程B的两个引用):
直到这一步,看起来没什么毛病。接下来线程B恢复,继续执行属于它自己的ReHash。线程B刚才的状态是:
e = Entry3
next = Entry2
当执行到上面这一行时,显然 i = 3,因为刚才线程A对于Entry3的hash结果也是3。
我们继续执行到这两行,Entry3放入了线程B的数组下标为3的位置,并且e指向了Entry2。此时e和next的指向如下:
e = Entry2
next = Entry2
整体情况如图所示:
接着是新一轮循环,又执行到红框内的代码行:
e = Entry2
next = Entry3
整体情况如图所示:
接下来执行下面的三行,用头插法把Entry2插入到了线程B的数组的头结点:
整体情况如图所示:
第三次循环开始,又执行到红框的代码:
e = Entry3
next = Entry3.next = null
最后一步,当我们执行下面这一行的时候 !
newTable[i] = Entry2
e = Entry3
Entry2.next = Entry3
Entry3.next = Entry2
链表出现了环形!
整体情况如图所示:
此时,问题还没有直接产生。当调用Get查找一个不存在的Key,而这个Key的Hash结果恰好等于3的时候,由于位置3带有环形链表,所以程序将会进入死循环!
在高并发下通常使用ConcurrentHashMap,这个集合类兼顾了线程安全和性能。
总结:
1.Hashmap在插入元素过多的时候需要进行Resize,Resize的条件是
HashMap.Size >= Capacity * LoadFactor。
2.Hashmap的Resize包含扩容和ReHash两个步骤,ReHash在并发的情况下可能会形成链表环。
在Jdk1.8中HashMap的实现方式做了一些改变,但是基本思想还是没有变得,只是在一些地方做了优化,数据结构的存储由数组+链表的方式,变化为数组+链表+红黑树的存储方式,当链表长度超过阈值(8)时,将链表转换为红黑树。在性能上进一步得到提升。
执行构造函数,当我们看到这个new,第一反应应该是在堆内存里开辟了一块空间。
Map<String,Object> map = new HashMap<String,Object>();
构造方法:
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
初始化了一个负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
负载因子默认为0.75f
transient Node<K,V>[] table;
看到了数组,数组里原对象是Node,来看下
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value; //key,value,用来存储put的key,value值的
Node<K,V> next; // next ,用来标记下一个元素
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value; //构造函数
this.next = next;
}
put方法解析:
public V put(K key, V value) {
//调用putVal()方法完成
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//判断table是否初始化,否则初始化操作
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//计算存储的索引位置,如果没有元素,直接赋值
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//节点若已经存在,执行赋值操作
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//判断链表是否是红黑树
else if (p instanceof TreeNode)
//红黑树对象操作
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//为链表,
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//链表长度8,将链表转化为红黑树存储
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//key存在,直接覆盖
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//记录修改次数
++modCount;
//判断是否需要扩容
if (++size > threshold)
resize();
//空操作
afterNodeInsertion(evict);
return null;
}
如果存在key节点,返回旧值,如果不存在则返回Null。
首先需要理解二叉查找树(Binary Search Tree)
二叉查找树(BST)具备的特性
1.左子树上所有结点的值均小于或等于它的根结点的值。
2.右子树上所有结点的值均大于或等于它的根结点的值。
3.左、右子树也分别为二叉排序树。
下图中这棵树,就是一颗典型的二叉查找树:
比如我要查找值为10的节点:
1、查看根节点9:
2、由于10 > 9,因此查看右孩子13:
3、由于10 < 13,因此查看左孩子11:
4.由于10 < 11,因此查看左孩子10,发现10正是要查找的节点:
这种方式正是二分查找的思想,查找所需的最大次数等同于二叉查找树的高度。
在插入节点的时候也是利用类似的方法,通过一层一层比较大小,找到新节点适合插入的位置。
但二叉查找树存在缺陷,如:
假设初始的二叉查找树只有三个节点,根节点值为9,左孩子值为8,右孩子值为12:
接下来我们依次插入如下五个节点:7,6,5,4,3。依照二叉查找树的特性,结果会变成如下这样:
这样的形态虽然也符合二叉查找树的特性,但是查找的性能大打折扣,几乎变成的线性。
如何解决二叉查找树多次插入新节点而导致的不平衡?红黑树应运而生了。
红黑树(Red Black Tree) 是一种自平衡的二叉查找树。除了符合二叉查找树的基本特性外,它还具备下列的附加特性:
1、节点是红色或黑色。
2、根节点是黑色。
3、每个叶子节点都是黑色的空节点(NIL节点)。
4 、每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
5、从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
这张图就是典型的红黑树!
正是因为这些规矩限制,才保证了红黑树的自平衡。红黑树从根到叶子的最长路径不会超过最短路径的2倍。
当插入或删除节点的时候,红黑树的规则有可能被打破。这时候就需要做出一些调整,来继续维持我们的规则。
什么情况下会破坏红黑树的规则,什么情况下不会破坏规则呢?举两个简单的例子:
1、向原红黑树插入值为14的新节点:
由于父节点15是黑色节点,因此这种情况并不会破坏红黑树的规则,无需做任何调整。
2、向原红黑树插入值为21的新节点:
由于父节点22是红色节点,因此这种情况打破了红黑树的规则4(每个红色节点的两个子节点都是黑色),必须进行调整,使之重新符合红黑树的规则。
调整有两种方法:[变色]和[旋转]。而旋转又分成了两种形式:[左旋转]和[右旋转]。
变色
为了重新符合红黑树的规则,尝试把红色节点变为黑色,或者把黑色节点变为红色。
下图所表示的是红黑树的一部分,需要注意节点25并非根节点。因为节点21和节点22连续出现了红色,不符合规则4,所以把节点22从红色变成黑色:
但这样并不算完,因为凭空多出的黑色节点打破了规则5,所以发生连锁反应,需要继续把节点25从黑色变成红色:
此时仍然没有结束,因为节点25和节点27又形成了两个连续的红色节点,需要继续把节点27从红色变成黑色:
左旋转:
逆时针旋转红黑树的两个节点,使得父节点被自己的右孩子取代,而自己成为自己的左孩子。看下图:
图中,身为右孩子的Y取代了X的位置,而X变成了自己的左孩子。此为左旋转。
右旋转:
顺时针旋转红黑树的两个节点,使得父节点被自己的左孩子取代,而自己成为自己的右孩子。看下图:
图中,身为左孩子的Y取代了X的位置,而X变成了自己的右孩子。此为右旋转。
红黑树的插入和删除包含很多种情况,每一种情况都有不同的处理方式。在这里举个典型的例子,体会一下!
我们以刚才插入节点21的情况为例:
首先,我们需要做的是变色,把节点25及其下方的节点变色:
此时 节点17 和 节点25 是连续的两个红色节点,那么把节点17变成黑色节点?恐怕不合适。这样一来不但打破了规则4,而且根据规则2(根节点是黑色),也不可能把节点13变成红色节点。
变色已无法解决问题,把节点13看着X,把节点17看着Y,想刚才的示意图那样进行左旋转:
由于根节点必须是黑色节点,所以需要变色,变色结果如下:
这样就结束了吗?并没有。因为其中两条路径(17 -> 8 -> 6 -> NIL)的黑色节点个数是4,其他路径的黑色节点个数是3,不符合规则5。
这时候我们需要把节点13看做X,节点8看做Y,像刚才的示意图那样进行右旋转:
最后根据规则来进行变色:
如此一来,红黑树变得重新符合规矩。 这一个例子的调整过程比较复杂,经历了如下步骤: 变色 -> 左旋转 -> 变色 -> 右旋转 -> 变色
红黑树的应用有很多,除了HashMap,jdk 的集合类TreeMap和TreeSet 底层就是红黑树实现的。
几点说明:
1、关于红黑树自平衡的调整,插入和删除节点的时候都涉及到很多种Case,由于篇幅原因无法展开来一一列举,有兴趣的朋友可以参考维基百科,里面讲的非常清晰。
2、红黑树调整过程的示例是一种比较复杂的情形,没太看明白的小伙伴也不必钻牛角尖,关键要懂得红黑树自平衡调整的主体思想。
参考文章
https://juejin.im/post/5a27c6946fb9a04509096248
https://zhuanlan.zhihu.com/p/28501879
https://blog.csdn.net/qq_41345773/article/details/92066554
标签:def key 为什么 oat 数组下标 length access next post
原文地址:https://www.cnblogs.com/yslss/p/13038699.html