码迷,mamicode.com
首页 > 其他好文 > 详细

14 深度学习-卷积

时间:2020-06-06 18:19:02      阅读:59      评论:0      收藏:0      [点我收藏+]

标签:运行   log   深度   href   api   无人驾驶汽车   变化   load   设计   

1.简述人工智能、机器学习和深度学习三者的联系与区别。

三者联系:

技术图片

 

三者区别:

  人工智能比喻成的孩子大脑,机器学习就是让孩子去掌握认知能力的过程,而深度学习是这过程中很有效率的一种教学体系。人工智能是目的,是结果;深度学习、机器学习是方法,是工具。

  机器学习是人工智能的一种途径或子集,它强调“学习”而不是计算机程序。一台机器使用复杂的算法来分析大量的数据,识别数据中的模式,并做出一个预测——不需要人在机器的软件中编写特定的指令。在错误地将奶油泡芙当成橙子之后,系统的模式识别会随着时间的推移而不断改进,因为它会像人一样从错误中吸取教训并纠正自己。通过机器学习,一个系统可以从自身的错误中学习来提高它的模式识别能力。

  深度学习是一种特殊的机器学习,深度学习适合处理大数据,而数据量比较小的时候,用传统机器学习方法也许更合适。深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。

深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

2. 全连接神经网络与卷积神经网络的联系与区别。

  卷积神经网络也是通过一层一层的节点组织起来的。和全连接神经网络一样,卷积神经网络中的每一个节点就是一个神经元。在全连接神经网络中,每相邻两层之间的节点都有边相连,于是会将每一层的全连接层中的节点组织成一列,这样方便显示连接结构。而对于卷积神经网络,相邻两层之间只有部分节点相连,为了展示每一层神经元的维度,一般会将每一层卷积层的节点组织成一个三维矩阵。

  除了结构相似,卷积神经网络的输入输出以及训练的流程和全连接神经网络也基本一致,以图像分类为列,卷积神经网络的输入层就是图像的原始图像,而输出层中的每一个节点代表了不同类别的可信度。这和全连接神经网络的输入输出是一致的。类似的,全连接神经网络的损失函数以及参数的优化过程也都适用于卷积神经网络。因此,全连接神经网络和卷积神经网络的唯一区别就是神经网络相邻两层的连接方式。

 

3.理解卷积计算。

以digit0为例,进行手工演算。

from sklearn.datasets import load_digits #小数据集8*8

digits = load_digits()

 

0 0 5 13 9 1 0 0
0 0 13 15 10 15 5 0
0 3 15 2 0 11 8 0
0 4 12 0 0 8 8 0
0 5 8 0 0 9 8 0
0 4 11 0 1 12 7 0
0 2 14 5 10 12 0 0
0 0 6 13 10 0 0 0

 

技术图片

 

 

4.理解卷积如何提取图像特征。

读取一个图像;

以下矩阵为卷积核进行卷积操作;

显示卷积之后的图像,观察提取到什么特征。

 

1 0 -1
1 0 -1
1 0 -1

 

1 1 1
0 0 0
-1 -1 -1

 

-1 -1 -1
-1 8 -1
-1 -1 -1

 

卷积API

scipy.signal.convolve2d

tf.keras.layers.Conv2D

代码如下:

技术图片

 

 运行结果:

原图:

技术图片

 

 处理后:

技术图片技术图片技术图片技术图片

 

 

5. 安装Tensorflow,keras

参考:https://blog.csdn.net/u011119817/article/details/88309256

 技术图片

 

 

6. 设计手写数字识别模型结构,注意数据维度的变化。

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D

model = tf.keras.Sequential()

model.add(Conv2D(…))

model.add(MaxPool2D(…))

...

#可以上传手动演算的每层数据结构的变化过程。model.summary() 

 

参考:

https://www.jianshu.com/p/afe485aa08ce

https://blog.csdn.net/junjun150013652/article/details/82217571

 

14 深度学习-卷积

标签:运行   log   深度   href   api   无人驾驶汽车   变化   load   设计   

原文地址:https://www.cnblogs.com/rushB/p/13055367.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!