标签:random rap sea objects unicode one === -- while
适用于win32/64以及win-ce平台,支持Unicode。
ZIP UTILS
by Lucian Wischik, June 2004 - July 2005
// For unzipping, add "unzip.cpp" to your project. Then, for example,
// 步骤1:包含unzip.h头文件
#include "unzip.h"
// 步骤2:打开zip文件
HZIP hz = OpenZip("c:\\stuff.zip",0);
ZIPENTRY ze;
GetZipItem(hz,-1,&ze);
int numitems=ze.index;
// 步骤3:解压文件
for (int i=0; i<numitems; i++)
{
GetZipItem(hz,i,&ze);
UnzipItem(hz,i,ze.name);
}
// 步骤4:关闭zip文件,释放句柄
CloseZip(hz);
/**
* For zipping, add "zip.cpp" to your project. (You can add just one of
* zip/unzip, or both; they function independently and also co-exist.)
*/
// 步骤1:包含zip.h
#include "zip.h"
// 步骤2:创建并打开zip文件
HZIP hz = CreateZip("c:\\simple1.zip",0);
// 步骤3:把数据写入zip
ZipAdd(hz,"znsimple.bmp", "c:\\simple.bmp");
ZipAdd(hz,"znsimple.txt", "c:\\simple.txt");
// 步骤4:关闭zip文件,释放句柄
CloseZip(hz);
#ifndef _zip_H
#define _zip_H
// ZIP functions -- for creating zip files
// This file is a repackaged form of the Info-Zip source code available
// at www.info-zip.org. The original copyright notice may be found in
// zip.cpp. The repackaging was done by Lucian Wischik to simplify and
// extend its use in Windows/C++. Also to add encryption and unicode.
#ifndef _unzip_H
DECLARE_HANDLE(HZIP);
#endif
// An HZIP identifies a zip file that is being created
typedef DWORD ZRESULT;
// return codes from any of the zip functions. Listed later.
HZIP CreateZip(const TCHAR *fn, const char *password);
HZIP CreateZip(void *buf, unsigned int len, const char *password);
HZIP CreateZipHandle(HANDLE h, const char *password);
// CreateZip - call this to start the creation of a zip file.
// As the zip is being created, it will be stored somewhere:
// to a pipe: CreateZipHandle(hpipe_write);
// in a file (by handle): CreateZipHandle(hfile);
// in a file (by name): CreateZip("c:\\test.zip");
// in memory: CreateZip(buf, len);
// or in pagefile memory: CreateZip(0, len);
// The final case stores it in memory backed by the system paging file,
// where the zip may not exceed len bytes. This is a bit friendlier than
// allocating memory with new[]: it won‘t lead to fragmentation, and the
// memory won‘t be touched unless needed. That means you can give very
// large estimates of the maximum-size without too much worry.
// As for the password, it lets you encrypt every file in the archive.
// (This api doesn‘t support per-file encryption.)
// Note: because pipes don‘t allow random access, the structure of a zipfile
// created into a pipe is slightly different from that created into a file
// or memory. In particular, the compressed-size of the item cannot be
// stored in the zipfile until after the item itself. (Also, for an item added
// itself via a pipe, the uncompressed-size might not either be known until
// after.) This is not normally a problem. But if you try to unzip via a pipe
// as well, then the unzipper will not know these things about the item until
// after it has been unzipped. Therefore: for unzippers which don‘t just write
// each item to disk or to a pipe, but instead pre-allocate memory space into
// which to unzip them, then either you have to create the zip not to a pipe,
// or you have to add items not from a pipe, or at least when adding items
// from a pipe you have to specify the length.
// Note: for windows-ce, you cannot close the handle until after CloseZip.
// but for real windows, the zip makes its own copy of your handle, so you
// can close yours anytime.
ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, const TCHAR *fn);
ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len);
ZRESULT ZipAddHandle(HZIP hz, const TCHAR *dstzn, HANDLE h);
ZRESULT ZipAddHandle(HZIP hz, const TCHAR *dstzn, HANDLE h, unsigned int len);
ZRESULT ZipAddFolder(HZIP hz, const TCHAR *dstzn);
// ZipAdd - call this for each file to be added to the zip.
// dstzn is the name that the file will be stored as in the zip file.
// The file to be added to the zip can come
// from a pipe: ZipAddHandle(hz,"file.dat", hpipe_read);
// from a file: ZipAddHandle(hz,"file.dat", hfile);
// from a filen: ZipAdd(hz,"file.dat", "c:\\docs\\origfile.dat");
// from memory: ZipAdd(hz,"subdir\\file.dat", buf,len);
// (folder): ZipAddFolder(hz,"subdir");
// Note: if adding an item from a pipe, and if also creating the zip file itself
// to a pipe, then you might wish to pass a non-zero length to the ZipAddHandle
// function. This will let the zipfile store the item‘s size ahead of the
// compressed item itself, which in turn makes it easier when unzipping the
// zipfile from a pipe.
ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len);
// ZipGetMemory - If the zip was created in memory, via ZipCreate(0,len),
// then this function will return information about that memory block.
// buf will receive a pointer to its start, and len its length.
// Note: you can‘t add any more after calling this.
ZRESULT CloseZip(HZIP hz);
// CloseZip - the zip handle must be closed with this function.
unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf, unsigned int len);
// FormatZipMessage - given an error code, formats it as a string.
// It returns the length of the error message. If buf/len points
// to a real buffer, then it also writes as much as possible into there.
// These are the result codes:
#define ZR_OK 0x00000000 // nb. the pseudo-code zr-recent is never returned,
#define ZR_RECENT 0x00000001 // but can be passed to FormatZipMessage.
// The following come from general system stuff (e.g. files not openable)
#define ZR_GENMASK 0x0000FF00
#define ZR_NODUPH 0x00000100 // couldn‘t duplicate the handle
#define ZR_NOFILE 0x00000200 // couldn‘t create/open the file
#define ZR_NOALLOC 0x00000300 // failed to allocate some resource
#define ZR_WRITE 0x00000400 // a general error writing to the file
#define ZR_NOTFOUND 0x00000500 // couldn‘t find that file in the zip
#define ZR_MORE 0x00000600 // there‘s still more data to be unzipped
#define ZR_CORRUPT 0x00000700 // the zipfile is corrupt or not a zipfile
#define ZR_READ 0x00000800 // a general error reading the file
// The following come from mistakes on the part of the caller
#define ZR_CALLERMASK 0x00FF0000
#define ZR_ARGS 0x00010000 // general mistake with the arguments
#define ZR_NOTMMAP 0x00020000 // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn‘t
#define ZR_MEMSIZE 0x00030000 // the memory size is too small
#define ZR_FAILED 0x00040000 // the thing was already failed when you called this function
#define ZR_ENDED 0x00050000 // the zip creation has already been closed
#define ZR_MISSIZE 0x00060000 // the indicated input file size turned out mistaken
#define ZR_PARTIALUNZ 0x00070000 // the file had already been partially unzipped
#define ZR_ZMODE 0x00080000 // tried to mix creating/opening a zip
// The following come from bugs within the zip library itself
#define ZR_BUGMASK 0xFF000000
#define ZR_NOTINITED 0x01000000 // initialisation didn‘t work
#define ZR_SEEK 0x02000000 // trying to seek in an unseekable file
#define ZR_NOCHANGE 0x04000000 // changed its mind on storage, but not allowed
#define ZR_FLATE 0x05000000 // an internal error in the de/inflation code
// e.g.
//
// (1) Traditional use, creating a zipfile from existing files
// HZIP hz = CreateZip("c:\\simple1.zip",0);
// ZipAdd(hz,"znsimple.bmp", "c:\\simple.bmp");
// ZipAdd(hz,"znsimple.txt", "c:\\simple.txt");
// CloseZip(hz);
//
// (2) Memory use, creating an auto-allocated mem-based zip file from various sources
// HZIP hz = CreateZip(0,100000, 0);
// // adding a conventional file...
// ZipAdd(hz,"src1.txt", "c:\\src1.txt");
// // adding something from memory...
// char buf[1000]; for (int i=0; i<1000; i++) buf[i]=(char)(i&0x7F);
// ZipAdd(hz,"file.dat", buf,1000);
// // adding something from a pipe...
// HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,NULL,0);
// HANDLE hthread = CreateThread(0,0,ThreadFunc,(void*)hwrite,0,0);
// ZipAdd(hz,"unz3.dat", hread,1000); // the ‘1000‘ is optional.
// WaitForSingleObject(hthread,INFINITE);
// CloseHandle(hthread); CloseHandle(hread);
// ... meanwhile DWORD WINAPI ThreadFunc(void *dat)
// { HANDLE hwrite = (HANDLE)dat;
// char buf[1000]={17};
// DWORD writ; WriteFile(hwrite,buf,1000,&writ,NULL);
// CloseHandle(hwrite);
// return 0;
// }
// // and now that the zip is created, let‘s do something with it:
// void *zbuf; unsigned long zlen; ZipGetMemory(hz,&zbuf,&zlen);
// HANDLE hfz = CreateFile("test2.zip",GENERIC_WRITE,0,0,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,0);
// DWORD writ; WriteFile(hfz,zbuf,zlen,&writ,NULL);
// CloseHandle(hfz);
// CloseZip(hz);
//
// (3) Handle use, for file handles and pipes
// HANDLE hzread,hzwrite; CreatePipe(&hzread,&hzwrite,0,0);
// HANDLE hthread = CreateThread(0,0,ZipReceiverThread,(void*)hzread,0,0);
// HZIP hz = CreateZipHandle(hzwrite,0);
// // ... add to it
// CloseZip(hz);
// CloseHandle(hzwrite);
// WaitForSingleObject(hthread,INFINITE);
// CloseHandle(hthread);
// ... meanwhile DWORD WINAPI ZipReceiverThread(void *dat)
// { HANDLE hread = (HANDLE)dat;
// char buf[1000];
// while (true)
// { DWORD red; ReadFile(hread,buf,1000,&red,NULL);
// // ... and do something with this zip data we‘re receiving
// if (red==0) break;
// }
// CloseHandle(hread);
// return 0;
// }
// Now we indulge in a little skullduggery so that the code works whether
// the user has included just zip or both zip and unzip.
// Idea: if header files for both zip and unzip are present, then presumably
// the cpp files for zip and unzip are both present, so we will call
// one or the other of them based on a dynamic choice. If the header file
// for only one is present, then we will bind to that particular one.
ZRESULT CloseZipZ(HZIP hz);
unsigned int FormatZipMessageZ(ZRESULT code, char *buf, unsigned int len);
bool IsZipHandleZ(HZIP hz);
#ifdef _unzip_H
#undef CloseZip
#define CloseZip(hz) (IsZipHandleZ(hz)?CloseZipZ(hz):CloseZipU(hz))
#else
#define CloseZip CloseZipZ
#define FormatZipMessage FormatZipMessageZ
#endif
#endif
#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#include "zip.h"
// THIS FILE is almost entirely based upon code by info-zip.
// It has been modified by Lucian Wischik. The modifications
// were a complete rewrite of the bit of code that generates the
// layout of the zipfile, and support for zipping to/from memory
// or handles or pipes or pagefile or diskfiles, encryption, unicode.
// The original code may be found at http://www.info-zip.org
// The original copyright text follows.
//
//
//
// This is version 1999-Oct-05 of the Info-ZIP copyright and license.
// The definitive version of this document should be available at
// ftp://ftp.cdrom.com/pub/infozip/license.html indefinitely.
//
// Copyright (c) 1990-1999 Info-ZIP. All rights reserved.
//
// For the purposes of this copyright and license, "Info-ZIP" is defined as
// the following set of individuals:
//
// Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,
// Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase,
// Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum,
// Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller,
// Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel,
// Steve Salisbury, Dave Smith, Christian Spieler, Antoine Verheijen,
// Paul von Behren, Rich Wales, Mike White
//
// This software is provided "as is," without warranty of any kind, express
// or implied. In no event shall Info-ZIP or its contributors be held liable
// for any direct, indirect, incidental, special or consequential damages
// arising out of the use of or inability to use this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. Redistributions of source code must retain the above copyright notice,
// definition, disclaimer, and this list of conditions.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, definition, disclaimer, and this list of conditions in
// documentation and/or other materials provided with the distribution.
//
// 3. Altered versions--including, but not limited to, ports to new operating
// systems, existing ports with new graphical interfaces, and dynamic,
// shared, or static library versions--must be plainly marked as such
// and must not be misrepresented as being the original source. Such
// altered versions also must not be misrepresented as being Info-ZIP
// releases--including, but not limited to, labeling of the altered
// versions with the names "Info-ZIP" (or any variation thereof, including,
// but not limited to, different capitalizations), "Pocket UnZip," "WiZ"
// or "MacZip" without the explicit permission of Info-ZIP. Such altered
// versions are further prohibited from misrepresentative use of the
// Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s).
//
// 4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip,"
// "WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and
// binary releases.
//
typedef unsigned char uch; // unsigned 8-bit value
typedef unsigned short ush; // unsigned 16-bit value
typedef unsigned long ulg; // unsigned 32-bit value
typedef size_t extent; // file size
typedef unsigned Pos; // must be at least 32 bits
typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing
#ifndef EOF
#define EOF (-1)
#endif
// Error return values. The values 0..4 and 12..18 follow the conventions
// of PKZIP. The values 4..10 are all assigned to "insufficient memory"
// by PKZIP, so the codes 5..10 are used here for other purposes.
#define ZE_MISS -1 // used by procname(), zipbare()
#define ZE_OK 0 // success
#define ZE_EOF 2 // unexpected end of zip file
#define ZE_FORM 3 // zip file structure error
#define ZE_MEM 4 // out of memory
#define ZE_LOGIC 5 // internal logic error
#define ZE_BIG 6 // entry too large to split
#define ZE_NOTE 7 // invalid comment format
#define ZE_TEST 8 // zip test (-T) failed or out of memory
#define ZE_ABORT 9 // user interrupt or termination
#define ZE_TEMP 10 // error using a temp file
#define ZE_READ 11 // read or seek error
#define ZE_NONE 12 // nothing to do
#define ZE_NAME 13 // missing or empty zip file
#define ZE_WRITE 14 // error writing to a file
#define ZE_CREAT 15 // couldn‘t open to write
#define ZE_PARMS 16 // bad command line
#define ZE_OPEN 18 // could not open a specified file to read
#define ZE_MAXERR 18 // the highest error number
// internal file attribute
#define UNKNOWN (-1)
#define BINARY 0
#define ASCII 1
#define BEST -1 // Use best method (deflation or store)
#define STORE 0 // Store method
#define DEFLATE 8 // Deflation method
#define CRCVAL_INITIAL 0L
// MSDOS file or directory attributes
#define MSDOS_HIDDEN_ATTR 0x02
#define MSDOS_DIR_ATTR 0x10
// Lengths of headers after signatures in bytes
#define LOCHEAD 26
#define CENHEAD 42
#define ENDHEAD 18
// Definitions for extra field handling:
#define EB_HEADSIZE 4 /* length of a extra field block header */
#define EB_LEN 2 /* offset of data length field in header */
#define EB_UT_MINLEN 1 /* minimal UT field contains Flags byte */
#define EB_UT_FLAGS 0 /* byte offset of Flags field */
#define EB_UT_TIME1 1 /* byte offset of 1st time value */
#define EB_UT_FL_MTIME (1 << 0) /* mtime present */
#define EB_UT_FL_ATIME (1 << 1) /* atime present */
#define EB_UT_FL_CTIME (1 << 2) /* ctime present */
#define EB_UT_LEN(n) (EB_UT_MINLEN + 4 * (n))
#define EB_L_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(3))
#define EB_C_UT_SIZE (EB_HEADSIZE + EB_UT_LEN(1))
// Macros for writing machine integers to little-endian format
#define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);}
#define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))}
// -- Structure of a ZIP file --
// Signatures for zip file information headers
#define LOCSIG 0x04034b50L
#define CENSIG 0x02014b50L
#define ENDSIG 0x06054b50L
#define EXTLOCSIG 0x08074b50L
#define MIN_MATCH 3
#define MAX_MATCH 258
// The minimum and maximum match lengths
#define WSIZE (0x8000)
// Maximum window size = 32K. If you are really short of memory, compile
// with a smaller WSIZE but this reduces the compression ratio for files
// of size > WSIZE. WSIZE must be a power of two in the current implementation.
//
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
// Minimum amount of lookahead, except at the end of the input file.
// See deflate.c for comments about the MIN_MATCH+1.
//
#define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
// In order to simplify the code, particularly on 16 bit machines, match
// distances are limited to MAX_DIST instead of WSIZE.
//
#define ZIP_HANDLE 1
#define ZIP_FILENAME 2
#define ZIP_MEMORY 3
#define ZIP_FOLDER 4
// ===========================================================================
// Constants
//
#define MAX_BITS 15
// All codes must not exceed MAX_BITS bits
#define MAX_BL_BITS 7
// Bit length codes must not exceed MAX_BL_BITS bits
#define LENGTH_CODES 29
// number of length codes, not counting the special END_BLOCK code
#define LITERALS 256
// number of literal bytes 0..255
#define END_BLOCK 256
// end of block literal code
#define L_CODES (LITERALS+1+LENGTH_CODES)
// number of Literal or Length codes, including the END_BLOCK code
#define D_CODES 30
// number of distance codes
#define BL_CODES 19
// number of codes used to transfer the bit lengths
#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES 2
// The three kinds of block type
#define LIT_BUFSIZE 0x8000
#define DIST_BUFSIZE LIT_BUFSIZE
// Sizes of match buffers for literals/lengths and distances. There are
// 4 reasons for limiting LIT_BUFSIZE to 64K:
// - frequencies can be kept in 16 bit counters
// - if compression is not successful for the first block, all input data is
// still in the window so we can still emit a stored block even when input
// comes from standard input. (This can also be done for all blocks if
// LIT_BUFSIZE is not greater than 32K.)
// - if compression is not successful for a file smaller than 64K, we can
// even emit a stored file instead of a stored block (saving 5 bytes).
// - creating new Huffman trees less frequently may not provide fast
// adaptation to changes in the input data statistics. (Take for
// example a binary file with poorly compressible code followed by
// a highly compressible string table.) Smaller buffer sizes give
// fast adaptation but have of course the overhead of transmitting trees
// more frequently.
// - I can‘t count above 4
// The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
// memory at the expense of compression). Some optimizations would be possible
// if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
//
#define REP_3_6 16
// repeat previous bit length 3-6 times (2 bits of repeat count)
#define REPZ_3_10 17
// repeat a zero length 3-10 times (3 bits of repeat count)
#define REPZ_11_138 18
// repeat a zero length 11-138 times (7 bits of repeat count)
#define HEAP_SIZE (2*L_CODES+1)
// maximum heap size
// ===========================================================================
// Local data used by the "bit string" routines.
//
#define Buf_size (8 * 2*sizeof(char))
// Number of bits used within bi_buf. (bi_buf may be implemented on
// more than 16 bits on some systems.)
// Output a 16 bit value to the bit stream, lower (oldest) byte first
#define PUTSHORT(state,w) { if (state.bs.out_offset >= state.bs.out_size-1) state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); }
#define PUTBYTE(state,b) { if (state.bs.out_offset >= state.bs.out_size) state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); state.bs.out_buf[state.bs.out_offset++] = (char) (b); }
// DEFLATE.CPP HEADER
#define HASH_BITS 15
// For portability to 16 bit machines, do not use values above 15.
#define HASH_SIZE (unsigned)(1<<HASH_BITS)
#define HASH_MASK (HASH_SIZE-1)
#define WMASK (WSIZE-1)
// HASH_SIZE and WSIZE must be powers of two
#define NIL 0
// Tail of hash chains
#define FAST 4
#define SLOW 2
// speed options for the general purpose bit flag
#define TOO_FAR 4096
// Matches of length 3 are discarded if their distance exceeds TOO_FAR
#define EQUAL 0
// result of memcmp for equal strings
// ===========================================================================
// Local data used by the "longest match" routines.
#define H_SHIFT ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH)
// Number of bits by which ins_h and del_h must be shifted at each
// input step. It must be such that after MIN_MATCH steps, the oldest
// byte no longer takes part in the hash key, that is:
// H_SHIFT * MIN_MATCH >= HASH_BITS
#define max_insert_length max_lazy_match
// Insert new strings in the hash table only if the match length
// is not greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.
const int extra_lbits[LENGTH_CODES] // extra bits for each length code
= {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0};
const int extra_dbits[D_CODES] // extra bits for each distance code
= {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
const int extra_blbits[BL_CODES]// extra bits for each bit length code
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7};
const uch bl_order[BL_CODES] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit length codes.
typedef struct config
{
ush good_length; // reduce lazy search above this match length
ush max_lazy; // do not perform lazy search above this match length
ush nice_length; // quit search above this match length
ush max_chain;
} config;
// Values for max_lazy_match, good_match, nice_match and max_chain_length,
// depending on the desired pack level (0..9). The values given below have
// been tuned to exclude worst case performance for pathological files.
// Better values may be found for specific files.
//
const config configuration_table[10] =
{
// good lazy nice chain
{0, 0, 0, 0}, // 0 store only
{4, 4, 8, 4}, // 1 maximum speed, no lazy matches
{4, 5, 16, 8}, // 2
{4, 6, 32, 32}, // 3
{4, 4, 16, 16}, // 4 lazy matches */
{8, 16, 32, 32}, // 5
{8, 16, 128, 128}, // 6
{8, 32, 128, 256}, // 7
{32, 128, 258, 1024}, // 8
{32, 258, 258, 4096}
};// 9 maximum compression */
// Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
// For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning.
// Data structure describing a single value and its code string.
typedef struct ct_data
{
union
{
ush freq; // frequency count
ush code; // bit string
} fc;
union
{
ush dad; // father node in Huffman tree
ush len; // length of bit string
} dl;
} ct_data;
typedef struct tree_desc
{
ct_data *dyn_tree; // the dynamic tree
ct_data *static_tree; // corresponding static tree or NULL
const int *extra_bits; // extra bits for each code or NULL
int extra_base; // base index for extra_bits
int elems; // max number of elements in the tree
int max_length; // max bit length for the codes
int max_code; // largest code with non zero frequency
} tree_desc;
class TTreeState {
public:
TTreeState();
ct_data dyn_ltree[HEAP_SIZE]; // literal and length tree
ct_data dyn_dtree[2 * D_CODES + 1]; // distance tree
ct_data static_ltree[L_CODES + 2]; // the static literal tree...
// ... Since the bit lengths are imposed, there is no need for the L_CODES
// extra codes used during heap construction. However the codes 286 and 287
// are needed to build a canonical tree (see ct_init below).
ct_data static_dtree[D_CODES]; // the static distance tree...
// ... (Actually a trivial tree since all codes use 5 bits.)
ct_data bl_tree[2 * BL_CODES + 1]; // Huffman tree for the bit lengths
tree_desc l_desc;
tree_desc d_desc;
tree_desc bl_desc;
ush bl_count[MAX_BITS + 1]; // number of codes at each bit length for an optimal tree
int heap[2 * L_CODES + 1]; // heap used to build the Huffman trees
int heap_len; // number of elements in the heap
int heap_max; // element of largest frequency
// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
// The same heap array is used to build all trees.
uch depth[2 * L_CODES + 1];
// Depth of each subtree used as tie breaker for trees of equal frequency
uch length_code[MAX_MATCH - MIN_MATCH + 1];
// length code for each normalized match length (0 == MIN_MATCH)
uch dist_code[512];
// distance codes. The first 256 values correspond to the distances
// 3 .. 258, the last 256 values correspond to the top 8 bits of
// the 15 bit distances.
int base_length[LENGTH_CODES];
// First normalized length for each code (0 = MIN_MATCH)
int base_dist[D_CODES];
// First normalized distance for each code (0 = distance of 1)
uch far l_buf[LIT_BUFSIZE]; // buffer for literals/lengths
ush far d_buf[DIST_BUFSIZE]; // buffer for distances
uch flag_buf[(LIT_BUFSIZE / 8)];
// flag_buf is a bit array distinguishing literals from lengths in
// l_buf, and thus indicating the presence or absence of a distance.
unsigned last_lit; // running index in l_buf
unsigned last_dist; // running index in d_buf
unsigned last_flags; // running index in flag_buf
uch flags; // current flags not yet saved in flag_buf
uch flag_bit; // current bit used in flags
// bits are filled in flags starting at bit 0 (least significant).
// Note: these flags are overkill in the current code since we don‘t
// take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
ulg opt_len; // bit length of current block with optimal trees
ulg static_len; // bit length of current block with static trees
ulg cmpr_bytelen; // total byte length of compressed file
ulg cmpr_len_bits; // number of bits past ‘cmpr_bytelen‘
ulg input_len; // total byte length of input file
// input_len is for debugging only since we can get it by other means.
ush *file_type; // pointer to UNKNOWN, BINARY or ASCII
// int *file_method; // pointer to DEFLATE or STORE
};
TTreeState::TTreeState()
{
tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS, 0};
l_desc = a;
tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0};
d_desc = b;
tree_desc c = {bl_tree, NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0};
bl_desc = c;
last_lit = 0;
last_dist = 0;
last_flags = 0;
}
class TBitState {
public:
int flush_flg;
//
unsigned bi_buf;
// Output buffer. bits are inserted starting at the bottom (least significant
// bits). The width of bi_buf must be at least 16 bits.
int bi_valid;
// Number of valid bits in bi_buf. All bits above the last valid bit
// are always zero.
char *out_buf;
// Current output buffer.
unsigned out_offset;
// Current offset in output buffer.
// On 16 bit machines, the buffer is limited to 64K.
unsigned out_size;
// Size of current output buffer
ulg bits_sent; // bit length of the compressed data only needed for debugging???
};
class TDeflateState {
public:
TDeflateState() {
window_size = 0;
}
uch window[2L * WSIZE];
// Sliding window. Input bytes are read into the second half of the window,
// and move to the first half later to keep a dictionary of at least WSIZE
// bytes. With this organization, matches are limited to a distance of
// WSIZE-MAX_MATCH bytes, but this ensures that IO is always
// performed with a length multiple of the block size. Also, it limits
// the window size to 64K, which is quite useful on MSDOS.
// To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would
// be less efficient since the data would have to be copied WSIZE/CBSZ times)
Pos prev[WSIZE];
// Link to older string with same hash index. To limit the size of this
// array to 64K, this link is maintained only for the last 32K strings.
// An index in this array is thus a window index modulo 32K.
Pos head[HASH_SIZE];
// Heads of the hash chains or NIL. If your compiler thinks that
// HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC.
ulg window_size;
// window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
// input file length plus MIN_LOOKAHEAD.
long block_start;
// window position at the beginning of the current output block. Gets
// negative when the window is moved backwards.
int sliding;
// Set to false when the input file is already in memory
unsigned ins_h; // hash index of string to be inserted
unsigned int prev_length;
// Length of the best match at previous step. Matches not greater than this
// are discarded. This is used in the lazy match evaluation.
unsigned strstart; // start of string to insert
unsigned match_start; // start of matching string
int eofile; // flag set at end of input file
unsigned lookahead; // number of valid bytes ahead in window
unsigned max_chain_length;
// To speed up deflation, hash chains are never searched beyond this length.
// A higher limit improves compression ratio but degrades the speed.
unsigned int max_lazy_match;
// Attempt to find a better match only when the current match is strictly
// smaller than this value. This mechanism is used only for compression
// levels >= 4.
unsigned good_match;
// Use a faster search when the previous match is longer than this
int nice_match; // Stop searching when current match exceeds this
};
typedef __int64 lutime_t; // define it ourselves since we don‘t include time.h
typedef struct iztimes
{
lutime_t atime, mtime, ctime;
} iztimes; // access, modify, create times
typedef struct zlist
{
ush vem, ver, flg, how; // See central header in zipfile.c for what vem..off are
ulg tim, crc, siz, len;
extent nam, ext, cext, com; // offset of ext must be >= LOCHEAD
ush dsk, att, lflg; // offset of lflg must be >= LOCHEAD
ulg atx, off;
char name[MAX_PATH]; // File name in zip file
char *extra; // Extra field (set only if ext != 0)
char *cextra; // Extra in central (set only if cext != 0)
char *comment; // Comment (set only if com != 0)
char iname[MAX_PATH]; // Internal file name after cleanup
char zname[MAX_PATH]; // External version of internal name
int mark; // Marker for files to operate on
int trash; // Marker for files to delete
int dosflag; // Set to force MSDOS file attributes
struct zlist far *nxt; // Pointer to next header in list
} TZipFileInfo;
struct TState;
typedef unsigned (*READFUNC)(TState &state, char *buf, unsigned size);
typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size);
typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size);
struct TState
{
void *param;
int level;
bool seekable;
READFUNC readfunc;
FLUSHFUNC flush_outbuf;
TTreeState ts;
TBitState bs;
TDeflateState ds;
const char *err;
};
void Assert(TState &state, bool cond, const char *msg)
{
if (cond) return;
state.err = msg;
}
void __cdecl Trace(const char *x, ...)
{
va_list paramList;
va_start(paramList, x);
paramList;
va_end(paramList);
}
void __cdecl Tracec(bool, const char *x, ...)
{
va_list paramList;
va_start(paramList, x);
paramList;
va_end(paramList);
}
// ===========================================================================
// Local (static) routines in this file.
//
void init_block (TState &);
void pqdownheap (TState &, ct_data *tree, int k);
void gen_bitlen (TState &, tree_desc *desc);
void gen_codes (TState &state, ct_data *tree, int max_code);
void build_tree (TState &, tree_desc *desc);
void scan_tree (TState &, ct_data *tree, int max_code);
void send_tree (TState &state, ct_data *tree, int max_code);
int build_bl_tree (TState &);
void send_all_trees (TState &state, int lcodes, int dcodes, int blcodes);
void compress_block (TState &state, ct_data *ltree, ct_data *dtree);
void set_file_type (TState &);
void send_bits (TState &state, int value, int length);
unsigned bi_reverse (unsigned code, int len);
void bi_windup (TState &state);
void copy_block (TState &state, char *buf, unsigned len, int header);
#define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len)
// Send a code of the given tree. c and tree must not have side effects
// alternatively...
//#define send_code(state, c, tree)
// { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c));
// send_bits(state, tree[c].fc.code, tree[c].dl.len); }
#define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)])
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. dist_code[256] and dist_code[257] are never used.
#define Max(a,b) (a >= b ? a : b)
/* the arguments must not have side effects */
/* ===========================================================================
* Allocate the match buffer, initialize the various tables and save the
* location of the internal file attribute (ascii/binary) and method
* (DEFLATE/STORE).
*/
void ct_init(TState &state, ush *attr)
{
int n; /* iterates over tree elements */
int bits; /* bit counter */
int length; /* length value */
int code; /* code value */
int dist; /* distance index */
state.ts.file_type = attr;
//state.ts.file_method = method;
state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L;
state.ts.input_len = 0L;
if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called */
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES - 1; code++)
{
state.ts.base_length[code] = length;
for (n = 0; n < (1 << extra_lbits[code]); n++)
{
state.ts.length_code[length++] = (uch)code;
}
}
Assert(state, length == 256, "ct_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
state.ts.length_code[length - 1] = (uch)code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0 ; code < 16; code++)
{
state.ts.base_dist[code] = dist;
for (n = 0; n < (1 << extra_dbits[code]); n++)
{
state.ts.dist_code[dist++] = (uch)code;
}
}
Assert(state, dist == 256, "ct_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for ( ; code < D_CODES; code++)
{
state.ts.base_dist[code] = dist << 7;
for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++)
{
state.ts.dist_code[256 + dist++] = (uch)code;
}
}
Assert(state, dist == 256, "ct_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;
n = 0;
while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++;
while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++;
while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;
/* fc.codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes(state, (ct_data *)state.ts.static_ltree, L_CODES + 1);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++)
{
state.ts.static_dtree[n].dl.len = 5;
state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5);
}
/* Initialize the first block of the first file: */
init_block(state);
}
/* ===========================================================================
* Initialize a new block.
*/
void init_block(TState &state)
{
int n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) state.ts.dyn_ltree[n].fc.freq = 0;
for (n = 0; n < D_CODES; n++) state.ts.dyn_dtree[n].fc.freq = 0;
for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0;
state.ts.dyn_ltree[END_BLOCK].fc.freq = 1;
state.ts.opt_len = state.ts.static_len = 0L;
state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0;
state.ts.flags = 0;
state.ts.flag_bit = 1;
}
#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */
/* ===========================================================================
* Remove the smallest element from the heap and recreate the heap with
* one less element. Updates heap and heap_len.
*/
#define pqremove(tree, top) { top = state.ts.heap[SMALLEST]; state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; pqdownheap(state,tree, SMALLEST); }
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#define smaller(tree, n, m) (tree[n].fc.freq < tree[m].fc.freq || (tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m]))
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
void pqdownheap(TState &state, ct_data *tree, int k)
{
int v = state.ts.heap[k];
int j = k << 1; /* left son of k */
int htemp; /* required because of bug in SASC compiler */
while (j <= state.ts.heap_len)
{
/* Set j to the smallest of the two sons: */
if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j + 1], state.ts.heap[j])) j++;
/* Exit if v is smaller than both sons */
htemp = state.ts.heap[j];
if (smaller(tree, v, htemp)) break;
/* Exchange v with the smallest son */
state.ts.heap[k] = htemp;
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
state.ts.heap[k] = v;
}
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
void gen_bitlen(TState &state, tree_desc *desc)
{
ct_data *tree = desc->dyn_tree;
const int *extra = desc->extra_bits;
int base = desc->extra_base;
int max_code = desc->max_code;
int max_length = desc->max_length;
ct_data *stree = desc->static_tree;
int h; /* heap index */
int n, m; /* iterate over the tree elements */
int bits; /* bit length */
int xbits; /* extra bits */
ush f; /* frequency */
int overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */
for (h = state.ts.heap_max + 1; h < HEAP_SIZE; h++)
{
n = state.ts.heap[h];
bits = tree[tree[n].dl.dad].dl.len + 1;
if (bits > max_length) bits = max_length, overflow++;
tree[n].dl.len = (ush)bits;
/* We overwrite tree[n].dl.dad which is no longer needed */
if (n > max_code) continue; /* not a leaf node */
state.ts.bl_count[bits]++;
xbits = 0;
if (n >= base) xbits = extra[n - base];
f = tree[n].fc.freq;
state.ts.opt_len += (ulg)f * (bits + xbits);
if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits);
}
if (overflow == 0) return;
Trace("\nbit length overflow\n");
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do
{
bits = max_length - 1;
while (state.ts.bl_count[bits] == 0) bits--;
state.ts.bl_count[bits]--; /* move one leaf down the tree */
state.ts.bl_count[bits + 1] += (ush)2; /* move one overflow item as its brother */
state.ts.bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from ‘ar‘ written by Haruhiko Okumura.)
*/
for (bits = max_length; bits != 0; bits--)
{
n = state.ts.bl_count[bits];
while (n != 0)
{
m = state.ts.heap[--h];
if (m > max_code) continue;
if (tree[m].dl.len != (ush)bits)
{
Trace("code %d bits %d->%d\n", m, tree[m].dl.len, bits);
state.ts.opt_len += ((long)bits - (long)tree[m].dl.len) * (long)tree[m].fc.freq;
tree[m].dl.len = (ush)bits;
}
n--;
}
}
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
void gen_codes (TState &state, ct_data *tree, int max_code)
{
ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
ush code = 0; /* running code value */
int bits; /* bit index */
int n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++)
{
next_code[bits] = code = (ush)((code + state.ts.bl_count[bits - 1]) << 1);
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
Assert(state, code + state.ts.bl_count[MAX_BITS] - 1 == (1 << ((ush) MAX_BITS)) - 1,
"inconsistent bit counts");
Trace("\ngen_codes: max_code %d ", max_code);
for (n = 0; n <= max_code; n++)
{
int len = tree[n].dl.len;
if (len == 0) continue;
/* Now reverse the bits */
tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len);
//Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ‘ ‘), len, tree[n].fc.code, next_code[len]-1);
}
}
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
void build_tree(TState &state, tree_desc *desc)
{
ct_data *tree = desc->dyn_tree;
ct_data *stree = desc->static_tree;
int elems = desc->elems;
int n, m; /* iterate over heap elements */
int max_code = -1; /* largest code with non zero frequency */
int node = elems; /* next internal node of the tree */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++)
{
if (tree[n].fc.freq != 0)
{
state.ts.heap[++state.ts.heap_len] = max_code = n;
state.ts.depth[n] = 0;
}
else
{
tree[n].dl.len = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (state.ts.heap_len < 2)
{
int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0);
tree[newcp].fc.freq = 1;
state.ts.depth[newcp] = 0;
state.ts.opt_len--;
if (stree) state.ts.static_len -= stree[newcp].dl.len;
/* new is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = state.ts.heap_len / 2; n >= 1; n--) pqdownheap(state, tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do
{
pqremove(tree, n); /* n = node of least frequency */
m = state.ts.heap[SMALLEST]; /* m = node of next least frequency */
state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */
state.ts.heap[--state.ts.heap_max] = m;
/* Create a new node father of n and m */
tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq);
state.ts.depth[node] = (uch) (Max(state.ts.depth[n], state.ts.depth[m]) + 1);
tree[n].dl.dad = tree[m].dl.dad = (ush)node;
/* and insert the new node in the heap */
state.ts.heap[SMALLEST] = node++;
pqdownheap(state, tree, SMALLEST);
} while (state.ts.heap_len >= 2);
state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(state, (tree_desc *)desc);
/* The field len is now set, we can generate the bit codes */
gen_codes (state, (ct_data *)tree, max_code);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree. Updates opt_len to take into account the repeat
* counts. (The contribution of the bit length codes will be added later
* during the construction of bl_tree.)
*/
void scan_tree (TState &state, ct_data *tree, int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].dl.len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
if (nextlen == 0) max_count = 138, min_count = 3;
tree[max_code + 1].dl.len = (ush) - 1; /* guard */
for (n = 0; n <= max_code; n++)
{
curlen = nextlen;
nextlen = tree[n + 1].dl.len;
if (++count < max_count && curlen == nextlen)
{
continue;
}
else if (count < min_count)
{
state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count);
}
else if (curlen != 0)
{
if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++;
state.ts.bl_tree[REP_3_6].fc.freq++;
}
else if (count <= 10)
{
state.ts.bl_tree[REPZ_3_10].fc.freq++;
}
else
{
state.ts.bl_tree[REPZ_11_138].fc.freq++;
}
count = 0;
prevlen = curlen;
if (nextlen == 0)
{
max_count = 138, min_count = 3;
}
else if (curlen == nextlen)
{
max_count = 6, min_count = 3;
}
else
{
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
void send_tree (TState &state, ct_data *tree, int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].dl.len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
/* tree[max_code+1].dl.len = -1; */ /* guard already set */
if (nextlen == 0) max_count = 138, min_count = 3;
for (n = 0; n <= max_code; n++)
{
curlen = nextlen;
nextlen = tree[n + 1].dl.len;
if (++count < max_count && curlen == nextlen)
{
continue;
}
else if (count < min_count)
{
do
{
send_code(state, curlen, state.ts.bl_tree);
} while (--count != 0);
}
else if (curlen != 0)
{
if (curlen != prevlen)
{
send_code(state, curlen, state.ts.bl_tree);
count--;
}
Assert(state, count >= 3 && count <= 6, " 3_6?");
send_code(state, REP_3_6, state.ts.bl_tree);
send_bits(state, count - 3, 2);
}
else if (count <= 10)
{
send_code(state, REPZ_3_10, state.ts.bl_tree);
send_bits(state, count - 3, 3);
}
else
{
send_code(state, REPZ_11_138, state.ts.bl_tree);
send_bits(state, count - 11, 7);
}
count = 0;
prevlen = curlen;
if (nextlen == 0)
{
max_count = 138, min_count = 3;
}
else if (curlen == nextlen)
{
max_count = 6, min_count = 3;
}
else
{
max_count = 7, min_count = 4;
}
}
}
/* ===========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
int build_bl_tree(TState &state)
{
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree(state, (ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code);
scan_tree(state, (ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code);
/* Build the bit length tree: */
build_tree(state, (tree_desc *)(&state.ts.bl_desc));
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--)
{
if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break;
}
/* Update opt_len to include the bit length tree and counts */
state.ts.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
Trace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
return max_blindex;
}
/* ===========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
void send_all_trees(TState &state, int lcodes, int dcodes, int blcodes)
{
int rank; /* index in bl_order */
Assert(state, lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
Assert(state, lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
"too many codes");
Trace("\nbl counts: ");
send_bits(state, lcodes - 257, 5);
/* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
send_bits(state, dcodes - 1, 5);
send_bits(state, blcodes - 4, 4); /* not -3 as stated in appnote.txt */
for (rank = 0; rank < blcodes; rank++)
{
Trace("\nbl code %2d ", bl_order[rank]);
send_bits(state, state.ts.bl_tree[bl_order[rank]].dl.len, 3);
}
Trace("\nbl tree: sent %ld", state.bs.bits_sent);
send_tree(state, (ct_data *)state.ts.dyn_ltree, lcodes - 1); /* send the literal tree */
Trace("\nlit tree: sent %ld", state.bs.bits_sent);
send_tree(state, (ct_data *)state.ts.dyn_dtree, dcodes - 1); /* send the distance tree */
Trace("\ndist tree: sent %ld", state.bs.bits_sent);
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file. This function
* returns the total compressed length (in bytes) for the file so far.
*/
ulg flush_block(TState &state, char *buf, ulg stored_len, int eof)
{
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex; /* index of last bit length code of non zero freq */
state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items */
/* Check if the file is ascii or binary */
if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state);
/* Construct the literal and distance trees */
build_tree(state, (tree_desc *)(&state.ts.l_desc));
Trace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
build_tree(state, (tree_desc *)(&state.ts.d_desc));
Trace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = build_bl_tree(state);
/* Determine the best encoding. Compute first the block length in bytes */
opt_lenb = (state.ts.opt_len + 3 + 7) >> 3;
static_lenb = (state.ts.static_len + 3 + 7) >> 3;
state.ts.input_len += stored_len; /* for debugging only */
Trace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len,
state.ts.last_lit, state.ts.last_dist);
if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
// Originally, zip allowed the file to be transformed from a compressed
// into a stored file in the case where compression failed, there
// was only one block, and it was allowed to change. I‘ve removed this
// possibility since the code‘s cleaner if no changes are allowed.
//if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L
// && state.ts.cmpr_len_bits == 0L && state.seekable)
//{ // && state.ts.file_method != NULL
// // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there:
// Assert(state,buf!=NULL,"block vanished");
// copy_block(state,buf, (unsigned)stored_len, 0); // without header
// state.ts.cmpr_bytelen = stored_len;
// Assert(state,false,"unimplemented *state.ts.file_method = STORE;");
// //*state.ts.file_method = STORE;
//}
//else
if (stored_len + 4 <= opt_lenb && buf != (char *)NULL)
{
/* 4: two words for the lengths */
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can‘t have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
send_bits(state, (STORED_BLOCK << 1) + eof, 3); /* send block type */
state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4;
state.ts.cmpr_len_bits = 0L;
copy_block(state, buf, (unsigned)stored_len, 1); /* with header */
}
else if (static_lenb == opt_lenb)
{
send_bits(state, (STATIC_TREES << 1) + eof, 3);
compress_block(state, (ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree);
state.ts.cmpr_len_bits += 3 + state.ts.static_len;
state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
state.ts.cmpr_len_bits &= 7L;
}
else
{
send_bits(state, (DYN_TREES << 1) + eof, 3);
send_all_trees(state, state.ts.l_desc.max_code + 1, state.ts.d_desc.max_code + 1, max_blindex + 1);
compress_block(state, (ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree);
state.ts.cmpr_len_bits += 3 + state.ts.opt_len;
state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;
state.ts.cmpr_len_bits &= 7L;
}
Assert(state, ((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size");
init_block(state);
if (eof)
{
// Assert(state,input_len == isize, "bad input size");
bi_windup(state);
state.ts.cmpr_len_bits += 7; /* align on byte boundary */
}
Trace("\n");
return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3);
}
/* ===========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
int ct_tally (TState &state, int dist, int lc)
{
state.ts.l_buf[state.ts.last_lit++] = (uch)lc;
if (dist == 0)
{
/* lc is the unmatched char */
state.ts.dyn_ltree[lc].fc.freq++;
}
else
{
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
Assert(state, (ush)dist < (ush)MAX_DIST &&
(ush)lc <= (ush)(MAX_MATCH - MIN_MATCH) &&
(ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
state.ts.dyn_ltree[state.ts.length_code[lc] + LITERALS + 1].fc.freq++;
state.ts.dyn_dtree[d_code(dist)].fc.freq++;
state.ts.d_buf[state.ts.last_dist++] = (ush)dist;
state.ts.flags |= state.ts.flag_bit;
}
state.ts.flag_bit <<= 1;
/* Output the flags if they fill a byte: */
if ((state.ts.last_lit & 7) == 0)
{
state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags;
state.ts.flags = 0, state.ts.flag_bit = 1;
}
/* Try to guess if it is profitable to stop the current block here */
if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0)
{
/* Compute an upper bound for the compressed length */
ulg out_length = (ulg)state.ts.last_lit * 8L;
ulg in_length = (ulg)state.ds.strstart - state.ds.block_start;
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++)
{
out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq * (5L + extra_dbits[dcode]);
}
out_length >>= 3;
Trace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
state.ts.last_lit, state.ts.last_dist, in_length, out_length,
100L - out_length * 100L / in_length);
if (state.ts.last_dist < state.ts.last_lit / 2 && out_length < in_length / 2) return 1;
}
return (state.ts.last_lit == LIT_BUFSIZE - 1 || state.ts.last_dist == DIST_BUFSIZE);
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
}
/* ===========================================================================
* Send the block data compressed using the given Huffman trees
*/
void compress_block(TState &state, ct_data *ltree, ct_data *dtree)
{
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned lx = 0; /* running index in l_buf */
unsigned dx = 0; /* running index in d_buf */
unsigned fx = 0; /* running index in flag_buf */
uch flag = 0; /* current flags */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
if (state.ts.last_lit != 0) do
{
if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++];
lc = state.ts.l_buf[lx++];
if ((flag & 1) == 0)
{
send_code(state, lc, ltree); /* send a literal byte */
}
else
{
/* Here, lc is the match length - MIN_MATCH */
code = state.ts.length_code[lc];
send_code(state, code + LITERALS + 1, ltree); /* send the length code */
extra = extra_lbits[code];
if (extra != 0)
{
lc -= state.ts.base_length[code];
send_bits(state, lc, extra); /* send the extra length bits */
}
dist = state.ts.d_buf[dx++];
/* Here, dist is the match distance - 1 */
code = d_code(dist);
Assert(state, code < D_CODES, "bad d_code");
send_code(state, code, dtree); /* send the distance code */
extra = extra_dbits[code];
if (extra != 0)
{
dist -= state.ts.base_dist[code];
send_bits(state, dist, extra); /* send the extra distance bits */
}
} /* literal or match pair ? */
flag >>= 1;
} while (lx < state.ts.last_lit);
send_code(state, END_BLOCK, ltree);
}
/* ===========================================================================
* Set the file type to ASCII or BINARY, using a crude approximation:
* binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
* IN assertion: the fields freq of dyn_ltree are set and the total of all
* frequencies does not exceed 64K (to fit in an int on 16 bit machines).
*/
void set_file_type(TState &state)
{
int n = 0;
unsigned ascii_freq = 0;
unsigned bin_freq = 0;
while (n < 7) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
while (n < 128) ascii_freq += state.ts.dyn_ltree[n++].fc.freq;
while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq;
*state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
}
/* ===========================================================================
* Initialize the bit string routines.
*/
void bi_init (TState &state, char *tgt_buf, unsigned tgt_size, int flsh_allowed)
{
state.bs.out_buf = tgt_buf;
state.bs.out_size = tgt_size;
state.bs.out_offset = 0;
state.bs.flush_flg = flsh_allowed;
state.bs.bi_buf = 0;
state.bs.bi_valid = 0;
state.bs.bits_sent = 0L;
}
/* ===========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
void send_bits(TState &state, int value, int length)
{
Assert(state, length > 0 && length <= 15, "invalid length");
state.bs.bits_sent += (ulg)length;
/* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and
* (Buf_size - bi_valid) bits from value to flush the filled bi_buf,
* then fill in the rest of (value), leaving (length - (Buf_size-bi_valid))
* unused bits in bi_buf.
*/
state.bs.bi_buf |= (value << state.bs.bi_valid);
state.bs.bi_valid += length;
if (state.bs.bi_valid > (int)Buf_size)
{
PUTSHORT(state, state.bs.bi_buf);
state.bs.bi_valid -= Buf_size;
state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid);
}
}
/* ===========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
unsigned bi_reverse(unsigned code, int len)
{
register unsigned res = 0;
do
{
res |= code & 1;
code >>= 1, res <<= 1;
} while (--len > 0);
return res >> 1;
}
/* ===========================================================================
* Write out any remaining bits in an incomplete byte.
*/
void bi_windup(TState &state)
{
if (state.bs.bi_valid > 8)
{
PUTSHORT(state, state.bs.bi_buf);
}
else if (state.bs.bi_valid > 0)
{
PUTBYTE(state, state.bs.bi_buf);
}
if (state.bs.flush_flg)
{
state.flush_outbuf(state.param, state.bs.out_buf, &state.bs.out_offset);
}
state.bs.bi_buf = 0;
state.bs.bi_valid = 0;
state.bs.bits_sent = (state.bs.bits_sent + 7) & ~7;
}
/* ===========================================================================
* Copy a stored block to the zip file, storing first the length and its
* one‘s complement if requested.
*/
void copy_block(TState &state, char *block, unsigned len, int header)
{
bi_windup(state); /* align on byte boundary */
if (header)
{
PUTSHORT(state, (ush)len);
PUTSHORT(state, (ush)~len);
state.bs.bits_sent += 2 * 16;
}
if (state.bs.flush_flg)
{
state.flush_outbuf(state.param, state.bs.out_buf, &state.bs.out_offset);
state.bs.out_offset = len;
state.flush_outbuf(state.param, block, &state.bs.out_offset);
}
else if (state.bs.out_offset + len > state.bs.out_size)
{
Assert(state, false, "output buffer too small for in-memory compression");
}
else
{
memcpy(state.bs.out_buf + state.bs.out_offset, block, len);
state.bs.out_offset += len;
}
state.bs.bits_sent += (ulg)len << 3;
}
/* ===========================================================================
* Prototypes for functions.
*/
void fill_window (TState &state);
ulg deflate_fast (TState &state);
int longest_match (TState &state, IPos cur_match);
/* ===========================================================================
* Update a hash value with the given input byte
* IN assertion: all calls to to UPDATE_HASH are made with consecutive
* input characters, so that a running hash key can be computed from the
* previous key instead of complete recalculation each time.
*/
#define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
/* ===========================================================================
* Insert string s in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of s are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
#define INSERT_STRING(s, match_head) (UPDATE_HASH(state.ds.ins_h, state.ds.window[(s) + (MIN_MATCH-1)]), state.ds.prev[(s) & WMASK] = match_head = state.ds.head[state.ds.ins_h], state.ds.head[state.ds.ins_h] = (s))
/* ===========================================================================
* Initialize the "longest match" routines for a new file
*
* IN assertion: window_size is > 0 if the input file is already read or
* mmap‘ed in the window[] array, 0 otherwise. In the first case,
* window_size is sufficient to contain the whole input file plus
* MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end
* of window[] when looking for matches towards the end).
*/
void lm_init (TState &state, int pack_level, ush *flags)
{
register unsigned j;
Assert(state, pack_level >= 1 && pack_level <= 8, "bad pack level");
/* Do not slide the window if the whole input is already in memory
* (window_size > 0)
*/
state.ds.sliding = 0;
if (state.ds.window_size == 0L)
{
state.ds.sliding = 1;
state.ds.window_size = (ulg)2L * WSIZE;
}
/* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
* prev[] will be initialized on the fly.
*/
state.ds.head[HASH_SIZE - 1] = NIL;
memset((char *)state.ds.head, NIL, (unsigned)(HASH_SIZE - 1)*sizeof(*state.ds.head));
/* Set the default configuration parameters:
*/
state.ds.max_lazy_match = configuration_table[pack_level].max_lazy;
state.ds.good_match = configuration_table[pack_level].good_length;
state.ds.nice_match = configuration_table[pack_level].nice_length;
state.ds.max_chain_length = configuration_table[pack_level].max_chain;
if (pack_level <= 2)
{
*flags |= FAST;
}
else if (pack_level >= 8)
{
*flags |= SLOW;
}
/* ??? reduce max_chain_length for binary files */
state.ds.strstart = 0;
state.ds.block_start = 0L;
j = WSIZE;
j <<= 1; // Can read 64K in one step
state.ds.lookahead = state.readfunc(state, (char *)state.ds.window, j);
if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF)
{
state.ds.eofile = 1, state.ds.lookahead = 0;
return;
}
state.ds.eofile = 0;
/* Make sure that we always have enough lookahead. This is important
* if input comes from a device such as a tty.
*/
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
state.ds.ins_h = 0;
for (j = 0; j < MIN_MATCH - 1; j++) UPDATE_HASH(state.ds.ins_h, state.ds.window[j]);
/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
* not important since only literal bytes will be emitted.
*/
}
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
*/
// For 80x86 and 680x0 and ARM, an optimized version is in match.asm or
// match.S. The code is functionally equivalent, so you can use the C version
// if desired. Which I do so desire!
int longest_match(TState &state, IPos cur_match)
{
unsigned chain_length = state.ds.max_chain_length; /* max hash chain length */
register uch far *scan = state.ds.window + state.ds.strstart; /* current string */
register uch far *match; /* matched string */
register int len; /* length of current match */
int best_len = state.ds.prev_length; /* best match length so far */
IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL;
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
// The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
// It is easy to get rid of this optimization if necessary.
Assert(state, HASH_BITS >= 8 && MAX_MATCH == 258, "Code too clever");
register uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH;
register uch scan_end1 = scan[best_len - 1];
register uch scan_end = scan[best_len];
/* Do not waste too much time if we already have a good match: */
if (state.ds.prev_length >= state.ds.good_match)
{
chain_length >>= 2;
}
Assert(state, state.ds.strstart <= state.ds.window_size - MIN_LOOKAHEAD, "insufficient lookahead");
do
{
Assert(state, cur_match < state.ds.strstart, "no future");
match = state.ds.window + cur_match;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:
*/
if (match[best_len] != scan_end ||
match[best_len - 1] != scan_end1 ||
*match != *scan ||
*++match != scan[1]) continue;
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scan += 2, match++;
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do
{
} while (*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
*++scan == *++match && *++scan == *++match &&
scan < strend);
Assert(state, scan <= state.ds.window + (unsigned)(state.ds.window_size - 1), "wild scan");
len = MAX_MATCH - (int)(strend - scan);
scan = strend - MAX_MATCH;
if (len > best_len)
{
state.ds.match_start = cur_match;
best_len = len;
if (len >= state.ds.nice_match) break;
scan_end1 = scan[best_len - 1];
scan_end = scan[best_len];
}
} while ((cur_match = state.ds.prev[cur_match & WMASK]) > limit
&& --chain_length != 0);
return best_len;
}
#define check_match(state,start, match, length)
// or alternatively...
//void check_match(TState &state,IPos start, IPos match, int length)
//{ // check that the match is indeed a match
// if (memcmp((char*)state.ds.window + match,
// (char*)state.ds.window + start, length) != EQUAL) {
// fprintf(stderr,
// " start %d, match %d, length %d\n",
// start, match, length);
// error("invalid match");
// }
// if (state.verbose > 1) {
// fprintf(stderr,"\\[%d,%d]", start-match, length);
// do { fprintf(stdout,"%c",state.ds.window[start++]); } while (--length != 0);
// }
//}
/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead, and sets eofile if end of input file.
*
* IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
* At least one byte has been read, or eofile is set; file reads are
* performed for at least two bytes (required for the translate_eol option).
*/
void fill_window(TState &state)
{
register unsigned n, m;
unsigned more; /* Amount of free space at the end of the window. */
do
{
more = (unsigned)(state.ds.window_size - (ulg)state.ds.lookahead - (ulg)state.ds.strstart);
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (more == (unsigned)EOF)
{
/* Very unlikely, but possible on 16 bit machine if strstart == 0
* and lookahead == 1 (input done one byte at time)
*/
more--;
/* For MMAP or BIG_MEM, the whole input file is already in memory so
* we must not perform sliding. We must however call (*read_buf)() in
* order to compute the crc, update lookahead and possibly set eofile.
*/
}
else if (state.ds.strstart >= WSIZE + MAX_DIST && state.ds.sliding)
{
/* By the IN assertion, the window is not empty so we can‘t confuse
* more == 0 with more == 64K on a 16 bit machine.
*/
memcpy((char *)state.ds.window, (char *)state.ds.window + WSIZE, (unsigned)WSIZE);
state.ds.match_start -= WSIZE;
state.ds.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
state.ds.block_start -= (long) WSIZE;
for (n = 0; n < HASH_SIZE; n++)
{
m = state.ds.head[n];
state.ds.head[n] = (Pos)(m >= WSIZE ? m - WSIZE : NIL);
}
for (n = 0; n < WSIZE; n++)
{
m = state.ds.prev[n];
state.ds.prev[n] = (Pos)(m >= WSIZE ? m - WSIZE : NIL);
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
}
more += WSIZE;
}
if (state.ds.eofile) return;
/* If there was no sliding:
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
* more == window_size - lookahead - strstart
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
* => more >= window_size - 2*WSIZE + 2
* In the MMAP or BIG_MEM case (not yet supported in gzip),
* window_size == input_size + MIN_LOOKAHEAD &&
* strstart + lookahead <= input_size => more >= MIN_LOOKAHEAD.
* Otherwise, window_size == 2*WSIZE so more >= 2.
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
*/
Assert(state, more >= 2, "more < 2");
n = state.readfunc(state, (char *)state.ds.window + state.ds.strstart + state.ds.lookahead, more);
if (n == 0 || n == (unsigned)EOF)
{
state.ds.eofile = 1;
}
else
{
state.ds.lookahead += n;
}
} while (state.ds.lookahead < MIN_LOOKAHEAD && !state.ds.eofile);
}
/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
*/
#define FLUSH_BLOCK(state,eof) flush_block(state,state.ds.block_start >= 0L ? (char*)&state.ds.window[(unsigned)state.ds.block_start] : (char*)NULL, (long)state.ds.strstart - state.ds.block_start, (eof))
/* ===========================================================================
* Processes a new input file and return its compressed length. This
* function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
ulg deflate_fast(TState &state)
{
IPos hash_head = NIL; /* head of the hash chain */
int flush; /* set if current block must be flushed */
unsigned match_length = 0; /* length of best match */
state.ds.prev_length = MIN_MATCH - 1;
while (state.ds.lookahead != 0)
{
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
if (state.ds.lookahead >= MIN_MATCH)
INSERT_STRING(state.ds.strstart, hash_head);
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (hash_head != NIL && state.ds.strstart - hash_head <= MAX_DIST)
{
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
/* Do not look for matches beyond the end of the input.
* This is necessary to make deflate deterministic.
*/
if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;
match_length = longest_match (state, hash_head);
/* longest_match() sets match_start */
if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;
}
if (match_length >= MIN_MATCH)
{
check_match(state, state.ds.strstart, state.ds.match_start, match_length);
flush = ct_tally(state, state.ds.strstart - state.ds.match_start, match_length - MIN_MATCH);
state.ds.lookahead -= match_length;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
if (match_length <= state.ds.max_insert_length
&& state.ds.lookahead >= MIN_MATCH)
{
match_length--; /* string at strstart already in hash table */
do
{
state.ds.strstart++;
INSERT_STRING(state.ds.strstart, hash_head);
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
} while (--match_length != 0);
state.ds.strstart++;
}
else
{
state.ds.strstart += match_length;
match_length = 0;
state.ds.ins_h = state.ds.window[state.ds.strstart];
UPDATE_HASH(state.ds.ins_h, state.ds.window[state.ds.strstart + 1]);
Assert(state, MIN_MATCH == 3, "Call UPDATE_HASH() MIN_MATCH-3 more times");
}
}
else
{
/* No match, output a literal byte */
flush = ct_tally (state, 0, state.ds.window[state.ds.strstart]);
state.ds.lookahead--;
state.ds.strstart++;
}
if (flush) FLUSH_BLOCK(state, 0), state.ds.block_start = state.ds.strstart;
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
}
return FLUSH_BLOCK(state, 1); /* eof */
}
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
ulg deflate(TState &state)
{
IPos hash_head = NIL; /* head of hash chain */
IPos prev_match; /* previous match */
int flush; /* set if current block must be flushed */
int match_available = 0; /* set if previous match exists */
register unsigned match_length = MIN_MATCH - 1; /* length of best match */
if (state.level <= 3) return deflate_fast(state); /* optimized for speed */
/* Process the input block. */
while (state.ds.lookahead != 0)
{
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
if (state.ds.lookahead >= MIN_MATCH)
INSERT_STRING(state.ds.strstart, hash_head);
/* Find the longest match, discarding those <= prev_length.
*/
state.ds.prev_length = match_length, prev_match = state.ds.match_start;
match_length = MIN_MATCH - 1;
if (hash_head != NIL && state.ds.prev_length < state.ds.max_lazy_match &&
state.ds.strstart - hash_head <= MAX_DIST)
{
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
/* Do not look for matches beyond the end of the input.
* This is necessary to make deflate deterministic.
*/
if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;
match_length = longest_match (state, hash_head);
/* longest_match() sets match_start */
if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;
/* Ignore a length 3 match if it is too distant: */
if (match_length == MIN_MATCH && state.ds.strstart - state.ds.match_start > TOO_FAR)
{
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
match_length = MIN_MATCH - 1;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if (state.ds.prev_length >= MIN_MATCH && match_length <= state.ds.prev_length)
{
unsigned max_insert = state.ds.strstart + state.ds.lookahead - MIN_MATCH;
check_match(state, state.ds.strstart - 1, prev_match, state.ds.prev_length);
flush = ct_tally(state, state.ds.strstart - 1 - prev_match, state.ds.prev_length - MIN_MATCH);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted.
*/
state.ds.lookahead -= state.ds.prev_length - 1;
state.ds.prev_length -= 2;
do
{
if (++state.ds.strstart <= max_insert)
{
INSERT_STRING(state.ds.strstart, hash_head);
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead.
*/
}
} while (--state.ds.prev_length != 0);
state.ds.strstart++;
match_available = 0;
match_length = MIN_MATCH - 1;
if (flush) FLUSH_BLOCK(state, 0), state.ds.block_start = state.ds.strstart;
}
else if (match_available)
{
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
if (ct_tally (state, 0, state.ds.window[state.ds.strstart - 1]))
{
FLUSH_BLOCK(state, 0), state.ds.block_start = state.ds.strstart;
}
state.ds.strstart++;
state.ds.lookahead--;
}
else
{
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
match_available = 1;
state.ds.strstart++;
state.ds.lookahead--;
}
// Assert(state,strstart <= isize && lookahead <= isize, "a bit too far");
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);
}
if (match_available) ct_tally (state, 0, state.ds.window[state.ds.strstart - 1]);
return FLUSH_BLOCK(state, 1); /* eof */
}
int putlocal(struct zlist far *z, WRITEFUNC wfunc, void *param)
{
// Write a local header described by *z to file *f. Return a ZE_ error code.
PUTLG(LOCSIG, f);
PUTSH(z->ver, f);
PUTSH(z->lflg, f);
PUTSH(z->how, f);
PUTLG(z->tim, f);
PUTLG(z->crc, f);
PUTLG(z->siz, f);
PUTLG(z->len, f);
PUTSH(z->nam, f);
PUTSH(z->ext, f);
size_t res = (size_t)wfunc(param, z->iname, (unsigned int)z->nam);
if (res != z->nam) return ZE_TEMP;
if (z->ext)
{
res = (size_t)wfunc(param, z->extra, (unsigned int)z->ext);
if (res != z->ext) return ZE_TEMP;
}
return ZE_OK;
}
int putextended(struct zlist far *z, WRITEFUNC wfunc, void *param)
{
// Write an extended local header described by *z to file *f. Returns a ZE_ code
PUTLG(EXTLOCSIG, f);
PUTLG(z->crc, f);
PUTLG(z->siz, f);
PUTLG(z->len, f);
return ZE_OK;
}
int putcentral(struct zlist far *z, WRITEFUNC wfunc, void *param)
{
// Write a central header entry of *z to file *f. Returns a ZE_ code.
PUTLG(CENSIG, f);
PUTSH(z->vem, f);
PUTSH(z->ver, f);
PUTSH(z->flg, f);
PUTSH(z->how, f);
PUTLG(z->tim, f);
PUTLG(z->crc, f);
PUTLG(z->siz, f);
PUTLG(z->len, f);
PUTSH(z->nam, f);
PUTSH(z->cext, f);
PUTSH(z->com, f);
PUTSH(z->dsk, f);
PUTSH(z->att, f);
PUTLG(z->atx, f);
PUTLG(z->off, f);
if ((size_t)wfunc(param, z->iname, (unsigned int)z->nam) != z->nam ||
(z->cext && (size_t)wfunc(param, z->cextra, (unsigned int)z->cext) != z->cext) ||
(z->com && (size_t)wfunc(param, z->comment, (unsigned int)z->com) != z->com))
return ZE_TEMP;
return ZE_OK;
}
int putend(int n, ulg s, ulg c, extent m, char *z, WRITEFUNC wfunc, void *param)
{
// write the end of the central-directory-data to file *f.
PUTLG(ENDSIG, f);
PUTSH(0, f);
PUTSH(0, f);
PUTSH(n, f);
PUTSH(n, f);
PUTLG(s, f);
PUTLG(c, f);
PUTSH(m, f);
// Write the comment, if any
if (m && wfunc(param, z, (unsigned int)m) != m) return ZE_TEMP;
return ZE_OK;
}
const ulg crc_table[256] =
{
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL
};
#define CRC32(c, b) (crc_table[((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8))
#define DO1(buf) crc = CRC32(crc, *buf++)
#define DO2(buf) DO1(buf); DO1(buf)
#define DO4(buf) DO2(buf); DO2(buf)
#define DO8(buf) DO4(buf); DO4(buf)
ulg crc32(ulg crc, const uch *buf, extent len)
{
if (buf == NULL) return 0L;
crc = crc ^ 0xffffffffL;
while (len >= 8)
{
DO8(buf);
len -= 8;
}
if (len) do
{
DO1(buf);
} while (--len);
return crc ^ 0xffffffffL; // (instead of ~c for 64-bit machines)
}
void update_keys(unsigned long *keys, char c)
{
keys[0] = CRC32(keys[0], c);
keys[1] += keys[0] & 0xFF;
keys[1] = keys[1] * 134775813L + 1;
keys[2] = CRC32(keys[2], keys[1] >> 24);
}
char decrypt_byte(unsigned long *keys)
{
unsigned temp = ((unsigned)keys[2] & 0xffff) | 2;
return (char)(((temp * (temp ^ 1)) >> 8) & 0xff);
}
char zencode(unsigned long *keys, char c)
{
int t = decrypt_byte(keys);
update_keys(keys, c);
return (char)(t ^ c);
}
bool HasZipSuffix(const TCHAR *fn)
{
const TCHAR *ext = fn + _tcslen(fn);
while (ext > fn && *ext != ‘.‘) ext--;
if (ext == fn && *ext != ‘.‘) return false;
if (_tcsicmp(ext, _T(".Z")) == 0) return true;
if (_tcsicmp(ext, _T(".zip")) == 0) return true;
if (_tcsicmp(ext, _T(".zoo")) == 0) return true;
if (_tcsicmp(ext, _T(".arc")) == 0) return true;
if (_tcsicmp(ext, _T(".lzh")) == 0) return true;
if (_tcsicmp(ext, _T(".arj")) == 0) return true;
if (_tcsicmp(ext, _T(".gz")) == 0) return true;
if (_tcsicmp(ext, _T(".tgz")) == 0) return true;
return false;
}
lutime_t filetime2timet(const FILETIME ft)
{
__int64 i = *(__int64 *)&ft;
return (lutime_t)((i - 116444736000000000) / 10000000);
}
void filetime2dosdatetime(const FILETIME ft, WORD *dosdate, WORD *dostime)
{
// date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980
// time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23
SYSTEMTIME st;
FileTimeToSystemTime(&ft, &st);
*dosdate = (WORD)(((st.wYear - 1980) & 0x7f) << 9);
*dosdate |= (WORD)((st.wMonth & 0xf) << 5);
*dosdate |= (WORD)((st.wDay & 0x1f));
*dostime = (WORD)((st.wHour & 0x1f) << 11);
*dostime |= (WORD)((st.wMinute & 0x3f) << 5);
*dostime |= (WORD)((st.wSecond * 2) & 0x1f);
}
ZRESULT GetFileInfo(HANDLE hf, ulg *attr, long *size, iztimes *times, ulg *timestamp)
{
// The handle must be a handle to a file
// The date and time is returned in a long with the date most significant to allow
// unsigned integer comparison of absolute times. The attributes have two
// high bytes unix attr, and two low bytes a mapping of that to DOS attr.
//struct stat s; int res=stat(fn,&s); if (res!=0) return false;
// translate windows file attributes into zip ones.
BY_HANDLE_FILE_INFORMATION bhi;
BOOL res = GetFileInformationByHandle(hf, &bhi);
if (!res) return ZR_NOFILE;
DWORD fa = bhi.dwFileAttributes;
ulg a = 0;
// Zip uses the lower word for its interpretation of windows stuff
if (fa & FILE_ATTRIBUTE_READONLY) a |= 0x01;
if (fa & FILE_ATTRIBUTE_HIDDEN) a |= 0x02;
if (fa & FILE_ATTRIBUTE_SYSTEM) a |= 0x04;
if (fa & FILE_ATTRIBUTE_DIRECTORY)a |= 0x10;
if (fa & FILE_ATTRIBUTE_ARCHIVE) a |= 0x20;
// It uses the upper word for standard unix attr, which we manually construct
if (fa & FILE_ATTRIBUTE_DIRECTORY)a |= 0x40000000; // directory
else a |= 0x80000000; // normal file
a |= 0x01000000; // readable
if (fa & FILE_ATTRIBUTE_READONLY) {}
else a |= 0x00800000; // writeable
// now just a small heuristic to check if it‘s an executable:
DWORD red, hsize = GetFileSize(hf, NULL);
if (hsize > 40)
{
SetFilePointer(hf, 0, NULL, FILE_BEGIN);
unsigned short magic;
ReadFile(hf, &magic, sizeof(magic), &red, NULL);
SetFilePointer(hf, 36, NULL, FILE_BEGIN);
unsigned long hpos;
ReadFile(hf, &hpos, sizeof(hpos), &red, NULL);
if (magic == 0x54AD && hsize > hpos + 4 + 20 + 28)
{
SetFilePointer(hf, hpos, NULL, FILE_BEGIN);
unsigned long signature;
ReadFile(hf, &signature, sizeof(signature), &red, NULL);
if (signature == IMAGE_DOS_SIGNATURE || signature == IMAGE_OS2_SIGNATURE
|| signature == IMAGE_OS2_SIGNATURE_LE || signature == IMAGE_NT_SIGNATURE)
{
a |= 0x00400000; // executable
}
}
}
//
if (attr != NULL) *attr = a;
if (size != NULL) *size = hsize;
if (times != NULL)
{
// lutime_t is 32bit number of seconds elapsed since 0:0:0GMT, Jan1, 1970.
// but FILETIME is 64bit number of 100-nanosecs since Jan1, 1601
times->atime = filetime2timet(bhi.ftLastAccessTime);
times->mtime = filetime2timet(bhi.ftLastWriteTime);
times->ctime = filetime2timet(bhi.ftCreationTime);
}
if (timestamp != NULL)
{
WORD dosdate, dostime;
filetime2dosdatetime(bhi.ftLastWriteTime, &dosdate, &dostime);
*timestamp = (WORD)dostime | (((DWORD)dosdate) << 16);
}
return ZR_OK;
}
class TZip {
public:
TZip(const char *pwd) : hfout(0), mustclosehfout(false), hmapout(0), zfis(0), obuf(0), hfin(0), writ(0), oerr(false), hasputcen(false), ooffset(0), encwriting(false), encbuf(0), password(0), state(0) {
if (pwd != 0 && *pwd != 0) {
password = new char[strlen(pwd) + 1];
strcpy(password, pwd);
}
}
~TZip() {
if (state != 0) delete state;
state = 0;
if (encbuf != 0) delete[] encbuf;
encbuf = 0;
if (password != 0) delete[] password;
password = 0;
}
// These variables say about the file we‘re writing into
// We can write to pipe, file-by-handle, file-by-name, memory-to-memmapfile
char *password; // keep a copy of the password
HANDLE hfout; // if valid, we‘ll write here (for files or pipes)
bool mustclosehfout; // if true, we are responsible for closing hfout
HANDLE hmapout; // otherwise, we‘ll write here (for memmap)
unsigned ooffset; // for hfout, this is where the pointer was initially
ZRESULT oerr; // did a write operation give rise to an error?
unsigned writ; // how far have we written. This is maintained by Add, not write(), to avoid confusion over seeks
bool ocanseek; // can we seek?
char *obuf; // this is where we‘ve locked mmap to view.
unsigned int opos; // current pos in the mmap
unsigned int mapsize; // the size of the map we created
bool hasputcen; // have we yet placed the central directory?
bool encwriting; // if true, then we‘ll encrypt stuff using ‘keys‘ before we write it to disk
unsigned long keys[3]; // keys are initialised inside Add()
char *encbuf; // if encrypting, then this is a temporary workspace for encrypting the data
unsigned int encbufsize; // (to be used and resized inside write(), and deleted in the destructor)
//
TZipFileInfo *zfis; // each file gets added onto this list, for writing the table at the end
TState *state; // we use just one state object per zip, because it‘s big (500k)
ZRESULT Create(void *z, unsigned int len, DWORD flags);
static unsigned sflush(void *param, const char *buf, unsigned *size);
static unsigned swrite(void *param, const char *buf, unsigned size);
unsigned int write(const char *buf, unsigned int size);
bool oseek(unsigned int pos);
ZRESULT GetMemory(void **pbuf, unsigned long *plen);
ZRESULT Close();
// some variables to do with the file currently being read:
// I haven‘t done it object-orientedly here, just put them all
// together, since OO didn‘t seem to make the design any clearer.
ulg attr;
iztimes times;
ulg timestamp; // all open_* methods set these
bool iseekable;
long isize, ired; // size is not set until close() on pips
ulg crc; // crc is not set until close(). iwrit is cumulative
HANDLE hfin;
bool selfclosehf; // for input files and pipes
const char *bufin;
unsigned int lenin, posin; // for memory
// and a variable for what we‘ve done with the input: (i.e. compressed it!)
ulg csize; // compressed size, set by the compression routines
// and this is used by some of the compression routines
char buf[16384];
ZRESULT open_file(const TCHAR *fn);
ZRESULT open_handle(HANDLE hf, unsigned int len);
ZRESULT open_mem(void *src, unsigned int len);
ZRESULT open_dir();
static unsigned sread(TState &s, char *buf, unsigned size);
unsigned read(char *buf, unsigned size);
ZRESULT iclose();
ZRESULT ideflate(TZipFileInfo *zfi);
ZRESULT istore();
ZRESULT Add(const TCHAR *odstzn, void *src, unsigned int len, DWORD flags);
ZRESULT AddCentral();
};
ZRESULT TZip::Create(void *z, unsigned int len, DWORD flags)
{
if (hfout != 0 || hmapout != 0 || obuf != 0 || writ != 0 || oerr != ZR_OK || hasputcen) return ZR_NOTINITED;
//
if (flags == ZIP_HANDLE)
{
HANDLE hf = (HANDLE)z;
hfout = hf;
mustclosehfout = false;
#ifdef DuplicateHandle
BOOL res = DuplicateHandle(GetCurrentProcess(), hf, GetCurrentProcess(), &hfout, 0, FALSE, DUPLICATE_SAME_ACCESS);
if (res) mustclosehandle = true;
#endif
// now we have hfout. Either we duplicated the handle and we close it ourselves
// (while the caller closes h themselves), or we couldn‘t duplicate it.
DWORD res = SetFilePointer(hfout, 0, 0, FILE_CURRENT);
ocanseek = (res != 0xFFFFFFFF);
if (ocanseek) ooffset = res;
else ooffset = 0;
return ZR_OK;
}
else if (flags == ZIP_FILENAME)
{
const TCHAR *fn = (const TCHAR *)z;
hfout = CreateFile(fn, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
if (hfout == INVALID_HANDLE_VALUE)
{
hfout = 0;
return ZR_NOFILE;
}
ocanseek = true;
ooffset = 0;
mustclosehfout = true;
return ZR_OK;
}
else if (flags == ZIP_MEMORY)
{
unsigned int size = len;
if (size == 0) return ZR_MEMSIZE;
if (z != 0) obuf = (char *)z;
else
{
hmapout = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE, 0, size, NULL);
if (hmapout == NULL) return ZR_NOALLOC;
obuf = (char *)MapViewOfFile(hmapout, FILE_MAP_ALL_ACCESS, 0, 0, size);
if (obuf == 0)
{
CloseHandle(hmapout);
hmapout = 0;
return ZR_NOALLOC;
}
}
ocanseek = true;
opos = 0;
mapsize = size;
return ZR_OK;
}
else return ZR_ARGS;
}
unsigned TZip::sflush(void *param, const char *buf, unsigned *size)
{
// static
if (*size == 0) return 0;
TZip *zip = (TZip *)param;
unsigned int writ = zip->write(buf, *size);
if (writ != 0) *size = 0;
return writ;
}
unsigned TZip::swrite(void *param, const char *buf, unsigned size)
{
// static
if (size == 0) return 0;
TZip *zip = (TZip *)param;
return zip->write(buf, size);
}
unsigned int TZip::write(const char *buf, unsigned int size)
{
const char *srcbuf = buf;
if (encwriting)
{
if (encbuf != 0 && encbufsize < size)
{
delete[] encbuf;
encbuf = 0;
}
if (encbuf == 0)
{
encbuf = new char[size * 2];
encbufsize = size;
}
memcpy(encbuf, buf, size);
for (unsigned int i = 0; i < size; i++) encbuf[i] = zencode(keys, encbuf[i]);
srcbuf = encbuf;
}
if (obuf != 0)
{
if (opos + size >= mapsize)
{
oerr = ZR_MEMSIZE;
return 0;
}
memcpy(obuf + opos, srcbuf, size);
opos += size;
return size;
}
else if (hfout != 0)
{
DWORD writ;
WriteFile(hfout, srcbuf, size, &writ, NULL);
return writ;
}
oerr = ZR_NOTINITED;
return 0;
}
bool TZip::oseek(unsigned int pos)
{
if (!ocanseek)
{
oerr = ZR_SEEK;
return false;
}
if (obuf != 0)
{
if (pos >= mapsize)
{
oerr = ZR_MEMSIZE;
return false;
}
opos = pos;
return true;
}
else if (hfout != 0)
{
SetFilePointer(hfout, pos + ooffset, NULL, FILE_BEGIN);
return true;
}
oerr = ZR_NOTINITED;
return 0;
}
ZRESULT TZip::GetMemory(void **pbuf, unsigned long *plen)
{
// When the user calls GetMemory, they‘re presumably at the end
// of all their adding. In any case, we have to add the central
// directory now, otherwise the memory we tell them won‘t be complete.
if (!hasputcen) AddCentral();
hasputcen = true;
if (pbuf != NULL) *pbuf = (void *)obuf;
if (plen != NULL) *plen = writ;
if (obuf == NULL) return ZR_NOTMMAP;
return ZR_OK;
}
ZRESULT TZip::Close()
{
// if the directory hadn‘t already been added through a call to GetMemory,
// then we do it now
ZRESULT res = ZR_OK;
if (!hasputcen) res = AddCentral();
hasputcen = true;
if (obuf != 0 && hmapout != 0) UnmapViewOfFile(obuf);
obuf = 0;
if (hmapout != 0) CloseHandle(hmapout);
hmapout = 0;
if (hfout != 0 && mustclosehfout) CloseHandle(hfout);
hfout = 0;
mustclosehfout = false;
return res;
}
ZRESULT TZip::open_file(const TCHAR *fn)
{
hfin = 0;
bufin = 0;
selfclosehf = false;
crc = CRCVAL_INITIAL;
isize = 0;
csize = 0;
ired = 0;
if (fn == 0) return ZR_ARGS;
HANDLE hf = CreateFile(fn, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);
if (hf == INVALID_HANDLE_VALUE) return ZR_NOFILE;
ZRESULT res = open_handle(hf, 0);
if (res != ZR_OK)
{
CloseHandle(hf);
return res;
}
selfclosehf = true;
return ZR_OK;
}
ZRESULT TZip::open_handle(HANDLE hf, unsigned int len)
{
hfin = 0;
bufin = 0;
selfclosehf = false;
crc = CRCVAL_INITIAL;
isize = 0;
csize = 0;
ired = 0;
if (hf == 0 || hf == INVALID_HANDLE_VALUE) return ZR_ARGS;
DWORD res = SetFilePointer(hfout, 0, 0, FILE_CURRENT);
if (res != 0xFFFFFFFF)
{
ZRESULT res = GetFileInfo(hf, &attr, &isize, ×, ×tamp);
if (res != ZR_OK) return res;
SetFilePointer(hf, 0, NULL, FILE_BEGIN); // because GetFileInfo will have screwed it up
iseekable = true;
hfin = hf;
return ZR_OK;
}
else
{
attr = 0x80000000; // just a normal file
isize = -1; // can‘t know size until at the end
if (len != 0) isize = len; // unless we were told explicitly!
iseekable = false;
SYSTEMTIME st;
GetLocalTime(&st);
FILETIME ft;
SystemTimeToFileTime(&st, &ft);
WORD dosdate, dostime;
filetime2dosdatetime(ft, &dosdate, &dostime);
times.atime = filetime2timet(ft);
times.mtime = times.atime;
times.ctime = times.atime;
timestamp = (WORD)dostime | (((DWORD)dosdate) << 16);
hfin = hf;
return ZR_OK;
}
}
ZRESULT TZip::open_mem(void *src, unsigned int len)
{
hfin = 0;
bufin = (const char *)src;
selfclosehf = false;
crc = CRCVAL_INITIAL;
ired = 0;
csize = 0;
ired = 0;
lenin = len;
posin = 0;
if (src == 0 || len == 0) return ZR_ARGS;
attr = 0x80000000; // just a normal file
isize = len;
iseekable = true;
SYSTEMTIME st;
GetLocalTime(&st);
FILETIME ft;
SystemTimeToFileTime(&st, &ft);
WORD dosdate, dostime;
filetime2dosdatetime(ft, &dosdate, &dostime);
times.atime = filetime2timet(ft);
times.mtime = times.atime;
times.ctime = times.atime;
timestamp = (WORD)dostime | (((DWORD)dosdate) << 16);
return ZR_OK;
}
ZRESULT TZip::open_dir()
{
hfin = 0;
bufin = 0;
selfclosehf = false;
crc = CRCVAL_INITIAL;
isize = 0;
csize = 0;
ired = 0;
attr = 0x41C00010; // a readable writable directory, and again directory
isize = 0;
iseekable = false;
SYSTEMTIME st;
GetLocalTime(&st);
FILETIME ft;
SystemTimeToFileTime(&st, &ft);
WORD dosdate, dostime;
filetime2dosdatetime(ft, &dosdate, &dostime);
times.atime = filetime2timet(ft);
times.mtime = times.atime;
times.ctime = times.atime;
timestamp = (WORD)dostime | (((DWORD)dosdate) << 16);
return ZR_OK;
}
unsigned TZip::sread(TState &s, char *buf, unsigned size)
{
// static
TZip *zip = (TZip *)s.param;
return zip->read(buf, size);
}
unsigned TZip::read(char *buf, unsigned size)
{
if (bufin != 0)
{
if (posin >= lenin) return 0; // end of input
ulg red = lenin - posin;
if (red > size) red = size;
memcpy(buf, bufin + posin, red);
posin += red;
ired += red;
crc = crc32(crc, (uch *)buf, red);
return red;
}
else if (hfin != 0)
{
DWORD red;
BOOL ok = ReadFile(hfin, buf, size, &red, NULL);
if (!ok) return 0;
ired += red;
crc = crc32(crc, (uch *)buf, red);
return red;
}
else
{
oerr = ZR_NOTINITED;
return 0;
}
}
ZRESULT TZip::iclose()
{
if (selfclosehf && hfin != 0) CloseHandle(hfin);
hfin = 0;
bool mismatch = (isize != -1 && isize != ired);
isize = ired; // and crc has been being updated anyway
if (mismatch) return ZR_MISSIZE;
else return ZR_OK;
}
ZRESULT TZip::ideflate(TZipFileInfo *zfi)
{
if (state == 0) state = new TState();
// It‘s a very big object! 500k! We allocate it on the heap, because PocketPC‘s
// stack breaks if we try to put it all on the stack. It will be deleted lazily
state->err = 0;
state->readfunc = sread;
state->flush_outbuf = sflush;
state->param = this;
state->level = 8;
state->seekable = iseekable;
state->err = NULL;
// the following line will make ct_init realise it has to perform the init
state->ts.static_dtree[0].dl.len = 0;
// Thanks to Alvin77 for this crucial fix:
state->ds.window_size = 0;
// I think that covers everything that needs to be initted.
//
bi_init(*state, buf, sizeof(buf), TRUE); // it used to be just 1024-size, not 16384 as here
ct_init(*state, &zfi->att);
lm_init(*state, state->level, &zfi->flg);
ulg sz = deflate(*state);
csize = sz;
ZRESULT r = ZR_OK;
if (state->err != NULL) r = ZR_FLATE;
return r;
}
ZRESULT TZip::istore()
{
ulg size = 0;
for (;;)
{
unsigned int cin = read(buf, 16384);
if (cin <= 0 || cin == (unsigned int)EOF) break;
unsigned int cout = write(buf, cin);
if (cout != cin) return ZR_MISSIZE;
size += cin;
}
csize = size;
return ZR_OK;
}
bool has_seeded = false;
ZRESULT TZip::Add(const TCHAR *odstzn, void *src, unsigned int len, DWORD flags)
{
if (oerr) return ZR_FAILED;
if (hasputcen) return ZR_ENDED;
// if we use password encryption, then every isize and csize is 12 bytes bigger
int passex = 0;
if (password != 0 && flags != ZIP_FOLDER) passex = 12;
// zip has its own notion of what its names should look like: i.e. dir/file.stuff
TCHAR dstzn[MAX_PATH];
_tcscpy(dstzn, odstzn);
if (*dstzn == 0) return ZR_ARGS;
TCHAR *d = dstzn;
while (*d != 0)
{
if (*d == ‘\\‘) *d = ‘/‘;
d++;
}
bool isdir = (flags == ZIP_FOLDER);
bool needs_trailing_slash = (isdir && dstzn[_tcslen(dstzn) - 1] != ‘/‘);
int method = DEFLATE;
if (isdir || HasZipSuffix(dstzn)) method = STORE;
// now open whatever was our input source:
ZRESULT openres;
if (flags == ZIP_FILENAME) openres = open_file((const TCHAR *)src);
else if (flags == ZIP_HANDLE) openres = open_handle((HANDLE)src, len);
else if (flags == ZIP_MEMORY) openres = open_mem(src, len);
else if (flags == ZIP_FOLDER) openres = open_dir();
else return ZR_ARGS;
if (openres != ZR_OK) return openres;
// A zip "entry" consists of a local header (which includes the file name),
// then the compressed data, and possibly an extended local header.
// Initialize the local header
TZipFileInfo zfi;
zfi.nxt = NULL;
strcpy(zfi.name, "");
#ifdef UNICODE
WideCharToMultiByte(CP_UTF8, 0, dstzn, -1, zfi.iname, MAX_PATH, 0, 0);
#else
strcpy(zfi.iname, dstzn);
#endif
zfi.nam = strlen(zfi.iname);
if (needs_trailing_slash)
{
strcat(zfi.iname, "/");
zfi.nam++;
}
strcpy(zfi.zname, "");
zfi.extra = NULL;
zfi.ext = 0; // extra header to go after this compressed data, and its length
zfi.cextra = NULL;
zfi.cext = 0; // extra header to go in the central end-of-zip directory, and its length
zfi.comment = NULL;
zfi.com = 0; // comment, and its length
zfi.mark = 1;
zfi.dosflag = 0;
zfi.att = (ush)BINARY;
zfi.vem = (ush)0xB17; // 0xB00 is win32 os-code. 0x17 is 23 in decimal: zip 2.3
zfi.ver = (ush)20; // Needs PKUNZIP 2.0 to unzip it
zfi.tim = timestamp;
// Even though we write the header now, it will have to be rewritten, since we don‘t know compressed size or crc.
zfi.crc = 0; // to be updated later
zfi.flg = 8; // 8 means ‘there is an extra header‘. Assume for the moment that we need it.
if (password != 0 && !isdir) zfi.flg = 9; // and 1 means ‘password-encrypted‘
zfi.lflg = zfi.flg; // to be updated later
zfi.how = (ush)method; // to be updated later
zfi.siz = (ulg)(method == STORE && isize >= 0 ? isize + passex : 0); // to be updated later
zfi.len = (ulg)(isize); // to be updated later
zfi.dsk = 0;
zfi.atx = attr;
zfi.off = writ + ooffset; // offset within file of the start of this local record
// stuff the ‘times‘ structure into zfi.extra
// nb. apparently there‘s a problem with PocketPC CE(zip)->CE(unzip) fails. And removing the following block fixes it up.
char xloc[EB_L_UT_SIZE];
zfi.extra = xloc;
zfi.ext = EB_L_UT_SIZE;
char xcen[EB_C_UT_SIZE];
zfi.cextra = xcen;
zfi.cext = EB_C_UT_SIZE;
xloc[0] = ‘U‘;
xloc[1] = ‘T‘;
xloc[2] = EB_UT_LEN(3); // length of data part of e.f.
xloc[3] = 0;
xloc[4] = EB_UT_FL_MTIME | EB_UT_FL_ATIME | EB_UT_FL_CTIME;
xloc[5] = (char)(times.mtime);
xloc[6] = (char)(times.mtime >> 8);
xloc[7] = (char)(times.mtime >> 16);
xloc[8] = (char)(times.mtime >> 24);
xloc[9] = (char)(times.atime);
xloc[10] = (char)(times.atime >> 8);
xloc[11] = (char)(times.atime >> 16);
xloc[12] = (char)(times.atime >> 24);
xloc[13] = (char)(times.ctime);
xloc[14] = (char)(times.ctime >> 8);
xloc[15] = (char)(times.ctime >> 16);
xloc[16] = (char)(times.ctime >> 24);
memcpy(zfi.cextra, zfi.extra, EB_C_UT_SIZE);
zfi.cextra[EB_LEN] = EB_UT_LEN(1);
// (1) Start by writing the local header:
int r = putlocal(&zfi, swrite, this);
if (r != ZE_OK)
{
iclose();
return ZR_WRITE;
}
writ += 4 + LOCHEAD + (unsigned int)zfi.nam + (unsigned int)zfi.ext;
if (oerr != ZR_OK)
{
iclose();
return oerr;
}
// (1.5) if necessary, write the encryption header
keys[0] = 305419896L;
keys[1] = 591751049L;
keys[2] = 878082192L;
for (const char *cp = password; cp != 0 && *cp != 0; cp++) update_keys(keys, *cp);
// generate some random bytes
if (!has_seeded) srand(GetTickCount() ^ (unsigned long)GetDesktopWindow());
char encbuf[12];
for (int i = 0; i < 12; i++) encbuf[i] = (char)((rand() >> 7) & 0xff);
encbuf[11] = (char)((zfi.tim >> 8) & 0xff);
for (int ei = 0; ei < 12; ei++) encbuf[ei] = zencode(keys, encbuf[ei]);
if (password != 0 && !isdir)
{
swrite(this, encbuf, 12);
writ += 12;
}
//(2) Write deflated/stored file to zip file
ZRESULT writeres = ZR_OK;
encwriting = (password != 0 && !isdir); // an object member variable to say whether we write to disk encrypted
if (!isdir && method == DEFLATE) writeres = ideflate(&zfi);
else if (!isdir && method == STORE) writeres = istore();
else if (isdir) csize = 0;
encwriting = false;
iclose();
writ += csize;
if (oerr != ZR_OK) return oerr;
if (writeres != ZR_OK) return ZR_WRITE;
// (3) Either rewrite the local header with correct information...
bool first_header_has_size_right = (zfi.siz == csize + passex);
zfi.crc = crc;
zfi.siz = csize + passex;
zfi.len = isize;
if (ocanseek && (password == 0 || isdir))
{
zfi.how = (ush)method;
if ((zfi.flg & 1) == 0) zfi.flg &= ~8; // clear the extended local header flag
zfi.lflg = zfi.flg;
// rewrite the local header:
if (!oseek(zfi.off - ooffset)) return ZR_SEEK;
if ((r = putlocal(&zfi, swrite, this)) != ZE_OK) return ZR_WRITE;
if (!oseek(writ)) return ZR_SEEK;
}
else
{
// (4) ... or put an updated header at the end
if (zfi.how != (ush) method) return ZR_NOCHANGE;
if (method == STORE && !first_header_has_size_right) return ZR_NOCHANGE;
if ((r = putextended(&zfi, swrite, this)) != ZE_OK) return ZR_WRITE;
writ += 16L;
zfi.flg = zfi.lflg; // if flg modified by inflate, for the central index
}
if (oerr != ZR_OK) return oerr;
// Keep a copy of the zipfileinfo, for our end-of-zip directory
char *cextra = new char[zfi.cext];
memcpy(cextra, zfi.cextra, zfi.cext);
zfi.cextra = cextra;
TZipFileInfo *pzfi = new TZipFileInfo;
memcpy(pzfi, &zfi, sizeof(zfi));
if (zfis == NULL) zfis = pzfi;
else
{
TZipFileInfo *z = zfis;
while (z->nxt != NULL) z = z->nxt;
z->nxt = pzfi;
}
return ZR_OK;
}
ZRESULT TZip::AddCentral()
{
// write central directory
int numentries = 0;
ulg pos_at_start_of_central = writ;
//ulg tot_unc_size=0, tot_compressed_size=0;
bool okay = true;
for (TZipFileInfo *zfi = zfis; zfi != NULL; )
{
if (okay)
{
int res = putcentral(zfi, swrite, this);
if (res != ZE_OK) okay = false;
}
writ += 4 + CENHEAD + (unsigned int)zfi->nam + (unsigned int)zfi->cext + (unsigned int)zfi->com;
//tot_unc_size += zfi->len;
//tot_compressed_size += zfi->siz;
numentries++;
//
TZipFileInfo *zfinext = zfi->nxt;
if (zfi->cextra != 0) delete[] zfi->cextra;
delete zfi;
zfi = zfinext;
}
ulg center_size = writ - pos_at_start_of_central;
if (okay)
{
int res = putend(numentries, center_size, pos_at_start_of_central + ooffset, 0, NULL, swrite, this);
if (res != ZE_OK) okay = false;
writ += 4 + ENDHEAD + 0;
}
if (!okay) return ZR_WRITE;
return ZR_OK;
}
ZRESULT lasterrorZ = ZR_OK;
unsigned int FormatZipMessageZ(ZRESULT code, char *buf, unsigned int len)
{
if (code == ZR_RECENT) code = lasterrorZ;
const char *msg = "unknown zip result code";
switch (code)
{
case ZR_OK:
msg = "Success";
break;
case ZR_NODUPH:
msg = "Culdn‘t duplicate handle";
break;
case ZR_NOFILE:
msg = "Couldn‘t create/open file";
break;
case ZR_NOALLOC:
msg = "Failed to allocate memory";
break;
case ZR_WRITE:
msg = "Error writing to file";
break;
case ZR_NOTFOUND:
msg = "File not found in the zipfile";
break;
case ZR_MORE:
msg = "Still more data to unzip";
break;
case ZR_CORRUPT:
msg = "Zipfile is corrupt or not a zipfile";
break;
case ZR_READ:
msg = "Error reading file";
break;
case ZR_ARGS:
msg = "Caller: faulty arguments";
break;
case ZR_PARTIALUNZ:
msg = "Caller: the file had already been partially unzipped";
break;
case ZR_NOTMMAP:
msg = "Caller: can only get memory of a memory zipfile";
break;
case ZR_MEMSIZE:
msg = "Caller: not enough space allocated for memory zipfile";
break;
case ZR_FAILED:
msg = "Caller: there was a previous error";
break;
case ZR_ENDED:
msg = "Caller: additions to the zip have already been ended";
break;
case ZR_ZMODE:
msg = "Caller: mixing creation and opening of zip";
break;
case ZR_NOTINITED:
msg = "Zip-bug: internal initialisation not completed";
break;
case ZR_SEEK:
msg = "Zip-bug: trying to seek the unseekable";
break;
case ZR_MISSIZE:
msg = "Zip-bug: the anticipated size turned out wrong";
break;
case ZR_NOCHANGE:
msg = "Zip-bug: tried to change mind, but not allowed";
break;
case ZR_FLATE:
msg = "Zip-bug: an internal error during flation";
break;
}
unsigned int mlen = (unsigned int)strlen(msg);
if (buf == 0 || len == 0) return mlen;
unsigned int n = mlen;
if (n + 1 > len) n = len - 1;
strncpy(buf, msg, n);
buf[n] = 0;
return mlen;
}
typedef struct
{
DWORD flag;
TZip *zip;
} TZipHandleData;
HZIP CreateZipInternal(void *z, unsigned int len, DWORD flags, const char *password)
{
TZip *zip = new TZip(password);
lasterrorZ = zip->Create(z, len, flags);
if (lasterrorZ != ZR_OK)
{
delete zip;
return 0;
}
TZipHandleData *han = new TZipHandleData;
han->flag = 2;
han->zip = zip;
return (HZIP)han;
}
HZIP CreateZipHandle(HANDLE h, const char *password)
{
return CreateZipInternal(h, 0, ZIP_HANDLE, password);
}
HZIP CreateZip(const TCHAR *fn, const char *password)
{
return CreateZipInternal((void *)fn, 0, ZIP_FILENAME, password);
}
HZIP CreateZip(void *z, unsigned int len, const char *password)
{
return CreateZipInternal(z, len, ZIP_MEMORY, password);
}
ZRESULT ZipAddInternal(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len, DWORD flags)
{
if (hz == 0)
{
lasterrorZ = ZR_ARGS;
return ZR_ARGS;
}
TZipHandleData *han = (TZipHandleData *)hz;
if (han->flag != 2)
{
lasterrorZ = ZR_ZMODE;
return ZR_ZMODE;
}
TZip *zip = han->zip;
lasterrorZ = zip->Add(dstzn, src, len, flags);
return lasterrorZ;
}
ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, const TCHAR *fn)
{
return ZipAddInternal(hz, dstzn, (void *)fn, 0, ZIP_FILENAME);
}
ZRESULT ZipAdd(HZIP hz, const TCHAR *dstzn, void *src, unsigned int len)
{
return ZipAddInternal(hz, dstzn, src, len, ZIP_MEMORY);
}
ZRESULT ZipAddHandle(HZIP hz, const TCHAR *dstzn, HANDLE h)
{
return ZipAddInternal(hz, dstzn, h, 0, ZIP_HANDLE);
}
ZRESULT ZipAddHandle(HZIP hz, const TCHAR *dstzn, HANDLE h, unsigned int len)
{
return ZipAddInternal(hz, dstzn, h, len, ZIP_HANDLE);
}
ZRESULT ZipAddFolder(HZIP hz, const TCHAR *dstzn)
{
return ZipAddInternal(hz, dstzn, 0, 0, ZIP_FOLDER);
}
ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len)
{
if (hz == 0)
{
if (buf != 0) *buf = 0;
if (len != 0) *len = 0;
lasterrorZ = ZR_ARGS;
return ZR_ARGS;
}
TZipHandleData *han = (TZipHandleData *)hz;
if (han->flag != 2)
{
lasterrorZ = ZR_ZMODE;
return ZR_ZMODE;
}
TZip *zip = han->zip;
lasterrorZ = zip->GetMemory(buf, len);
return lasterrorZ;
}
ZRESULT CloseZipZ(HZIP hz)
{
if (hz == 0)
{
lasterrorZ = ZR_ARGS;
return ZR_ARGS;
}
TZipHandleData *han = (TZipHandleData *)hz;
if (han->flag != 2)
{
lasterrorZ = ZR_ZMODE;
return ZR_ZMODE;
}
TZip *zip = han->zip;
lasterrorZ = zip->Close();
delete zip;
delete han;
return lasterrorZ;
}
bool IsZipHandleZ(HZIP hz)
{
if (hz == 0) return false;
TZipHandleData *han = (TZipHandleData *)hz;
return (han->flag == 2);
}
#ifndef _unzip_H
#define _unzip_H
// UNZIPPING functions -- for unzipping.
// This file is a repackaged form of extracts from the zlib code available
// at www.gzip.org/zlib, by Jean-Loup Gailly and Mark Adler. The original
// copyright notice may be found in unzip.cpp. The repackaging was done
// by Lucian Wischik to simplify and extend its use in Windows/C++. Also
// encryption and unicode filenames have been added.
#ifndef _zip_H
DECLARE_HANDLE(HZIP);
#endif
// An HZIP identifies a zip file that has been opened
typedef DWORD ZRESULT;
// return codes from any of the zip functions. Listed later.
typedef struct
{
int index; // index of this file within the zip
TCHAR name[MAX_PATH]; // filename within the zip
DWORD attr; // attributes, as in GetFileAttributes.
FILETIME atime, ctime, mtime; // access, create, modify filetimes
long comp_size; // sizes of item, compressed and uncompressed. These
long unc_size; // may be -1 if not yet known (e.g. being streamed in)
} ZIPENTRY;
HZIP OpenZip(const TCHAR *fn, const char *password);
HZIP OpenZip(void *z, unsigned int len, const char *password);
HZIP OpenZipHandle(HANDLE h, const char *password);
// OpenZip - opens a zip file and returns a handle with which you can
// subsequently examine its contents. You can open a zip file from:
// from a pipe: OpenZipHandle(hpipe_read,0);
// from a file (by handle): OpenZipHandle(hfile,0);
// from a file (by name): OpenZip("c:\\test.zip","password");
// from a memory block: OpenZip(bufstart, buflen,0);
// If the file is opened through a pipe, then items may only be
// accessed in increasing order, and an item may only be unzipped once,
// although GetZipItem can be called immediately before and after unzipping
// it. If it‘s opened in any other way, then full random access is possible.
// Note: pipe input is not yet implemented.
// Note: zip passwords are ascii, not unicode.
// Note: for windows-ce, you cannot close the handle until after CloseZip.
// but for real windows, the zip makes its own copy of your handle, so you
// can close yours anytime.
ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze);
// GetZipItem - call this to get information about an item in the zip.
// If index is -1 and the file wasn‘t opened through a pipe,
// then it returns information about the whole zipfile
// (and in particular ze.index returns the number of index items).
// Note: the item might be a directory (ze.attr & FILE_ATTRIBUTE_DIRECTORY)
// See below for notes on what happens when you unzip such an item.
// Note: if you are opening the zip through a pipe, then random access
// is not possible and GetZipItem(-1) fails and you can‘t discover the number
// of items except by calling GetZipItem on each one of them in turn,
// starting at 0, until eventually the call fails. Also, in the event that
// you are opening through a pipe and the zip was itself created into a pipe,
// then then comp_size and sometimes unc_size as well may not be known until
// after the item has been unzipped.
ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze);
// FindZipItem - finds an item by name. ic means ‘insensitive to case‘.
// It returns the index of the item, and returns information about it.
// If nothing was found, then index is set to -1 and the function returns
// an error code.
ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn);
ZRESULT UnzipItem(HZIP hz, int index, void *z, unsigned int len);
ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h);
// UnzipItem - given an index to an item, unzips it. You can unzip to:
// to a pipe: UnzipItemHandle(hz,i, hpipe_write);
// to a file (by handle): UnzipItemHandle(hz,i, hfile);
// to a file (by name): UnzipItem(hz,i, ze.name);
// to a memory block: UnzipItem(hz,i, buf,buflen);
// In the final case, if the buffer isn‘t large enough to hold it all,
// then the return code indicates that more is yet to come. If it was
// large enough, and you want to know precisely how big, GetZipItem.
// Note: zip files are normally stored with relative pathnames. If you
// unzip with ZIP_FILENAME a relative pathname then the item gets created
// relative to the current directory - it first ensures that all necessary
// subdirectories have been created. Also, the item may itself be a directory.
// If you unzip a directory with ZIP_FILENAME, then the directory gets created.
// If you unzip it to a handle or a memory block, then nothing gets created
// and it emits 0 bytes.
ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir);
// if unzipping to a filename, and it‘s a relative filename, then it will be relative to here.
// (defaults to current-directory).
ZRESULT CloseZip(HZIP hz);
// CloseZip - the zip handle must be closed with this function.
unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf, unsigned int len);
// FormatZipMessage - given an error code, formats it as a string.
// It returns the length of the error message. If buf/len points
// to a real buffer, then it also writes as much as possible into there.
// These are the result codes:
#define ZR_OK 0x00000000 // nb. the pseudo-code zr-recent is never returned,
#define ZR_RECENT 0x00000001 // but can be passed to FormatZipMessage.
// The following come from general system stuff (e.g. files not openable)
#define ZR_GENMASK 0x0000FF00
#define ZR_NODUPH 0x00000100 // couldn‘t duplicate the handle
#define ZR_NOFILE 0x00000200 // couldn‘t create/open the file
#define ZR_NOALLOC 0x00000300 // failed to allocate some resource
#define ZR_WRITE 0x00000400 // a general error writing to the file
#define ZR_NOTFOUND 0x00000500 // couldn‘t find that file in the zip
#define ZR_MORE 0x00000600 // there‘s still more data to be unzipped
#define ZR_CORRUPT 0x00000700 // the zipfile is corrupt or not a zipfile
#define ZR_READ 0x00000800 // a general error reading the file
#define ZR_PASSWORD 0x00001000 // we didn‘t get the right password to unzip the file
// The following come from mistakes on the part of the caller
#define ZR_CALLERMASK 0x00FF0000
#define ZR_ARGS 0x00010000 // general mistake with the arguments
#define ZR_NOTMMAP 0x00020000 // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn‘t
#define ZR_MEMSIZE 0x00030000 // the memory size is too small
#define ZR_FAILED 0x00040000 // the thing was already failed when you called this function
#define ZR_ENDED 0x00050000 // the zip creation has already been closed
#define ZR_MISSIZE 0x00060000 // the indicated input file size turned out mistaken
#define ZR_PARTIALUNZ 0x00070000 // the file had already been partially unzipped
#define ZR_ZMODE 0x00080000 // tried to mix creating/opening a zip
// The following come from bugs within the zip library itself
#define ZR_BUGMASK 0xFF000000
#define ZR_NOTINITED 0x01000000 // initialisation didn‘t work
#define ZR_SEEK 0x02000000 // trying to seek in an unseekable file
#define ZR_NOCHANGE 0x04000000 // changed its mind on storage, but not allowed
#define ZR_FLATE 0x05000000 // an internal error in the de/inflation code
// e.g.
//
// SetCurrentDirectory("c:\\docs\\stuff");
// HZIP hz = OpenZip("c:\\stuff.zip",0);
// ZIPENTRY ze; GetZipItem(hz,-1,&ze); int numitems=ze.index;
// for (int i=0; i<numitems; i++)
// { GetZipItem(hz,i,&ze);
// UnzipItem(hz,i,ze.name);
// }
// CloseZip(hz);
//
//
// HRSRC hrsrc = FindResource(hInstance,MAKEINTRESOURCE(1),RT_RCDATA);
// HANDLE hglob = LoadResource(hInstance,hrsrc);
// void *zipbuf=LockResource(hglob);
// unsigned int ziplen=SizeofResource(hInstance,hrsrc);
// HZIP hz = OpenZip(zipbuf, ziplen, 0);
// - unzip to a membuffer -
// ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze);
// char *ibuf = new char[ze.unc_size];
// UnzipItem(hz,i, ibuf, ze.unc_size);
// delete[] ibuf;
// - unzip to a fixed membuff -
// ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze);
// char ibuf[1024]; ZRESULT zr=ZR_MORE; unsigned long totsize=0;
// while (zr==ZR_MORE)
// { zr = UnzipItem(hz,i, ibuf,1024);
// unsigned long bufsize=1024; if (zr==ZR_OK) bufsize=ze.unc_size-totsize;
// totsize+=bufsize;
// }
// - unzip to a pipe -
// HANDLE hwrite; HANDLE hthread=CreateWavReaderThread(&hwrite);
// int i; ZIPENTRY ze; FindZipItem(hz,"sound.wav",true,&i,&ze);
// UnzipItemHandle(hz,i, hwrite);
// CloseHandle(hwrite);
// WaitForSingleObject(hthread,INFINITE);
// CloseHandle(hwrite); CloseHandle(hthread);
// - finished -
// CloseZip(hz);
// // note: no need to free resources obtained through Find/Load/LockResource
//
//
// SetCurrentDirectory("c:\\docs\\pipedzipstuff");
// HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,0,0);
// CreateZipWriterThread(hwrite);
// HZIP hz = OpenZipHandle(hread,0);
// for (int i=0; ; i++)
// { ZIPENTRY ze;
// ZRESULT zr=GetZipItem(hz,i,&ze); if (zr!=ZR_OK) break; // no more
// UnzipItem(hz,i, ze.name);
// }
// CloseZip(hz);
//
//
// Now we indulge in a little skullduggery so that the code works whether
// the user has included just zip or both zip and unzip.
// Idea: if header files for both zip and unzip are present, then presumably
// the cpp files for zip and unzip are both present, so we will call
// one or the other of them based on a dynamic choice. If the header file
// for only one is present, then we will bind to that particular one.
ZRESULT CloseZipU(HZIP hz);
unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf, unsigned int len);
bool IsZipHandleU(HZIP hz);
#ifdef _zip_H
#undef CloseZip
#define CloseZip(hz) (IsZipHandleU(hz)?CloseZipU(hz):CloseZipZ(hz))
#else
#define CloseZip CloseZipU
#define FormatZipMessage FormatZipMessageU
#endif
#endif // _unzip_H
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tchar.h>
#include "unzip.h"
// THIS FILE is almost entirely based upon code by Jean-loup Gailly
// and Mark Adler. It has been modified by Lucian Wischik.
// The modifications were: incorporate the bugfixes of 1.1.4, allow
// unzipping to/from handles/pipes/files/memory, encryption, unicode,
// a windowsish api, and putting everything into a single .cpp file.
// The original code may be found at http://www.gzip.org/zlib/
// The original copyright text follows.
//
//
//
// zlib.h -- interface of the ‘zlib‘ general purpose compression library
// version 1.1.3, July 9th, 1998
//
// Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler
//
// This software is provided ‘as-is‘, without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
// Jean-loup Gailly Mark Adler
// jloup@gzip.org madler@alumni.caltech.edu
//
//
// The data format used by the zlib library is described by RFCs (Request for
// Comments) 1950 to 1952 in the files ftp://ds.internic.net/rfc/rfc1950.txt
// (zlib format), rfc1951.txt (deflate format) and rfc1952.txt (gzip format).
//
//
// The ‘zlib‘ compression library provides in-memory compression and
// decompression functions, including integrity checks of the uncompressed
// data. This version of the library supports only one compression method
// (deflation) but other algorithms will be added later and will have the same
// stream interface.
//
// Compression can be done in a single step if the buffers are large
// enough (for example if an input file is mmap‘ed), or can be done by
// repeated calls of the compression function. In the latter case, the
// application must provide more input and/or consume the output
// (providing more output space) before each call.
//
// The library also supports reading and writing files in gzip (.gz) format
// with an interface similar to that of stdio.
//
// The library does not install any signal handler. The decoder checks
// the consistency of the compressed data, so the library should never
// crash even in case of corrupted input.
//
// for more info about .ZIP format, see ftp://ftp.cdrom.com/pub/infozip/doc/appnote-970311-iz.zip
// PkWare has also a specification at ftp://ftp.pkware.com/probdesc.zip
#define ZIP_HANDLE 1
#define ZIP_FILENAME 2
#define ZIP_MEMORY 3
#define zmalloc(len) malloc(len)
#define zfree(p) free(p)
/*
void *zmalloc(unsigned int len)
{ char *buf = new char[len+32];
for (int i=0; i<16; i++)
{ buf[i]=i;
buf[len+31-i]=i;
}
*((unsigned int*)buf) = len;
char c[1000]; wsprintf(c,"malloc 0x%lx - %lu",buf+16,len);
OutputDebugString(c);
return buf+16;
}
void zfree(void *buf)
{ char c[1000]; wsprintf(c,"free 0x%lx",buf);
OutputDebugString(c);
char *p = ((char*)buf)-16;
unsigned int len = *((unsigned int*)p);
bool blown=false;
for (int i=0; i<16; i++)
{ char lo = p[i];
char hi = p[len+31-i];
if (hi!=i || (lo!=i && i>4)) blown=true;
}
if (blown)
{ OutputDebugString("BLOWN!!!");
}
delete[] p;
}
*/
typedef struct tm_unz_s
{
unsigned int tm_sec; // seconds after the minute - [0,59]
unsigned int tm_min; // minutes after the hour - [0,59]
unsigned int tm_hour; // hours since midnight - [0,23]
unsigned int tm_mday; // day of the month - [1,31]
unsigned int tm_mon; // months since January - [0,11]
unsigned int tm_year; // years - [1980..2044]
} tm_unz;
// unz_global_info structure contain global data about the ZIPfile
typedef struct unz_global_info_s
{
unsigned long number_entry; // total number of entries in the central dir on this disk
unsigned long size_comment; // size of the global comment of the zipfile
} unz_global_info;
// unz_file_info contain information about a file in the zipfile
typedef struct unz_file_info_s
{
unsigned long version; // version made by 2 bytes
unsigned long version_needed; // version needed to extract 2 bytes
unsigned long flag; // general purpose bit flag 2 bytes
unsigned long compression_method; // compression method 2 bytes
unsigned long dosDate; // last mod file date in Dos fmt 4 bytes
unsigned long crc; // crc-32 4 bytes
unsigned long compressed_size; // compressed size 4 bytes
unsigned long uncompressed_size; // uncompressed size 4 bytes
unsigned long size_filename; // filename length 2 bytes
unsigned long size_file_extra; // extra field length 2 bytes
unsigned long size_file_comment; // file comment length 2 bytes
unsigned long disk_num_start; // disk number start 2 bytes
unsigned long internal_fa; // internal file attributes 2 bytes
unsigned long external_fa; // external file attributes 4 bytes
tm_unz tmu_date;
} unz_file_info;
#define UNZ_OK (0)
#define UNZ_END_OF_LIST_OF_FILE (-100)
#define UNZ_ERRNO (Z_ERRNO)
#define UNZ_EOF (0)
#define UNZ_PARAMERROR (-102)
#define UNZ_BADZIPFILE (-103)
#define UNZ_INTERNALERROR (-104)
#define UNZ_CRCERROR (-105)
#define UNZ_PASSWORD (-106)
#define ZLIB_VERSION "1.1.3"
// Allowed flush values; see deflate() for details
#define Z_NO_FLUSH 0
#define Z_SYNC_FLUSH 2
#define Z_FULL_FLUSH 3
#define Z_FINISH 4
// compression levels
#define Z_NO_COMPRESSION 0
#define Z_BEST_SPEED 1
#define Z_BEST_COMPRESSION 9
#define Z_DEFAULT_COMPRESSION (-1)
// compression strategy; see deflateInit2() for details
#define Z_FILTERED 1
#define Z_HUFFMAN_ONLY 2
#define Z_DEFAULT_STRATEGY 0
// Possible values of the data_type field
#define Z_BINARY 0
#define Z_ASCII 1
#define Z_UNKNOWN 2
// The deflate compression method (the only one supported in this version)
#define Z_DEFLATED 8
// for initializing zalloc, zfree, opaque
#define Z_NULL 0
// case sensitivity when searching for filenames
#define CASE_SENSITIVE 1
#define CASE_INSENSITIVE 2
// Return codes for the compression/decompression functions. Negative
// values are errors, positive values are used for special but normal events.
#define Z_OK 0
#define Z_STREAM_END 1
#define Z_NEED_DICT 2
#define Z_ERRNO (-1)
#define Z_STREAM_ERROR (-2)
#define Z_DATA_ERROR (-3)
#define Z_MEM_ERROR (-4)
#define Z_BUF_ERROR (-5)
#define Z_VERSION_ERROR (-6)
// Basic data types
typedef unsigned char Byte; // 8 bits
typedef unsigned int uInt; // 16 bits or more
typedef unsigned long uLong; // 32 bits or more
typedef void *voidpf;
typedef void *voidp;
typedef long z_off_t;
typedef voidpf (*alloc_func) (voidpf opaque, uInt items, uInt size);
typedef void (*free_func) (voidpf opaque, voidpf address);
struct internal_state;
typedef struct z_stream_s
{
Byte *next_in; // next input byte
uInt avail_in; // number of bytes available at next_in
uLong total_in; // total nb of input bytes read so far
Byte *next_out; // next output byte should be put there
uInt avail_out; // remaining free space at next_out
uLong total_out; // total nb of bytes output so far
char *msg; // last error message, NULL if no error
struct internal_state *state; // not visible by applications
alloc_func zalloc; // used to allocate the internal state
free_func zfree; // used to free the internal state
voidpf opaque; // private data object passed to zalloc and zfree
int data_type; // best guess about the data type: ascii or binary
uLong adler; // adler32 value of the uncompressed data
uLong reserved; // reserved for future use
} z_stream;
typedef z_stream *z_streamp;
// The application must update next_in and avail_in when avail_in has
// dropped to zero. It must update next_out and avail_out when avail_out
// has dropped to zero. The application must initialize zalloc, zfree and
// opaque before calling the init function. All other fields are set by the
// compression library and must not be updated by the application.
//
// The opaque value provided by the application will be passed as the first
// parameter for calls of zalloc and zfree. This can be useful for custom
// memory management. The compression library attaches no meaning to the
// opaque value.
//
// zalloc must return Z_NULL if there is not enough memory for the object.
// If zlib is used in a multi-threaded application, zalloc and zfree must be
// thread safe.
//
// The fields total_in and total_out can be used for statistics or
// progress reports. After compression, total_in holds the total size of
// the uncompressed data and may be saved for use in the decompressor
// (particularly if the decompressor wants to decompress everything in
// a single step).
//
// basic functions
const char *zlibVersion ();
// The application can compare zlibVersion and ZLIB_VERSION for consistency.
// If the first character differs, the library code actually used is
// not compatible with the zlib.h header file used by the application.
// This check is automatically made by inflateInit.
int inflate (z_streamp strm, int flush);
//
// inflate decompresses as much data as possible, and stops when the input
// buffer becomes empty or the output buffer becomes full. It may some
// introduce some output latency (reading input without producing any output)
// except when forced to flush.
//
// The detailed semantics are as follows. inflate performs one or both of the
// following actions:
//
// - Decompress more input starting at next_in and update next_in and avail_in
// accordingly. If not all input can be processed (because there is not
// enough room in the output buffer), next_in is updated and processing
// will resume at this point for the next call of inflate().
//
// - Provide more output starting at next_out and update next_out and avail_out
// accordingly. inflate() provides as much output as possible, until there
// is no more input data or no more space in the output buffer (see below
// about the flush parameter).
//
// Before the call of inflate(), the application should ensure that at least
// one of the actions is possible, by providing more input and/or consuming
// more output, and updating the next_* and avail_* values accordingly.
// The application can consume the uncompressed output when it wants, for
// example when the output buffer is full (avail_out == 0), or after each
// call of inflate(). If inflate returns Z_OK and with zero avail_out, it
// must be called again after making room in the output buffer because there
// might be more output pending.
//
// If the parameter flush is set to Z_SYNC_FLUSH, inflate flushes as much
// output as possible to the output buffer. The flushing behavior of inflate is
// not specified for values of the flush parameter other than Z_SYNC_FLUSH
// and Z_FINISH, but the current implementation actually flushes as much output
// as possible anyway.
//
// inflate() should normally be called until it returns Z_STREAM_END or an
// error. However if all decompression is to be performed in a single step
// (a single call of inflate), the parameter flush should be set to
// Z_FINISH. In this case all pending input is processed and all pending
// output is flushed; avail_out must be large enough to hold all the
// uncompressed data. (The size of the uncompressed data may have been saved
// by the compressor for this purpose.) The next operation on this stream must
// be inflateEnd to deallocate the decompression state. The use of Z_FINISH
// is never required, but can be used to inform inflate that a faster routine
// may be used for the single inflate() call.
//
// If a preset dictionary is needed at this point (see inflateSetDictionary
// below), inflate sets strm-adler to the adler32 checksum of the
// dictionary chosen by the compressor and returns Z_NEED_DICT; otherwise
// it sets strm->adler to the adler32 checksum of all output produced
// so far (that is, total_out bytes) and returns Z_OK, Z_STREAM_END or
// an error code as described below. At the end of the stream, inflate()
// checks that its computed adler32 checksum is equal to that saved by the
// compressor and returns Z_STREAM_END only if the checksum is correct.
//
// inflate() returns Z_OK if some progress has been made (more input processed
// or more output produced), Z_STREAM_END if the end of the compressed data has
// been reached and all uncompressed output has been produced, Z_NEED_DICT if a
// preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
// corrupted (input stream not conforming to the zlib format or incorrect
// adler32 checksum), Z_STREAM_ERROR if the stream structure was inconsistent
// (for example if next_in or next_out was NULL), Z_MEM_ERROR if there was not
// enough memory, Z_BUF_ERROR if no progress is possible or if there was not
// enough room in the output buffer when Z_FINISH is used. In the Z_DATA_ERROR
// case, the application may then call inflateSync to look for a good
// compression block.
//
int inflateEnd (z_streamp strm);
//
// All dynamically allocated data structures for this stream are freed.
// This function discards any unprocessed input and does not flush any
// pending output.
//
// inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
// was inconsistent. In the error case, msg may be set but then points to a
// static string (which must not be deallocated).
// Advanced functions
// The following functions are needed only in some special applications.
int inflateSetDictionary (z_streamp strm,
const Byte *dictionary,
uInt dictLength);
//
// Initializes the decompression dictionary from the given uncompressed byte
// sequence. This function must be called immediately after a call of inflate
// if this call returned Z_NEED_DICT. The dictionary chosen by the compressor
// can be determined from the Adler32 value returned by this call of
// inflate. The compressor and decompressor must use exactly the same
// dictionary.
//
// inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
// parameter is invalid (such as NULL dictionary) or the stream state is
// inconsistent, Z_DATA_ERROR if the given dictionary doesn‘t match the
// expected one (incorrect Adler32 value). inflateSetDictionary does not
// perform any decompression: this will be done by subsequent calls of
// inflate().
int inflateSync (z_streamp strm);
//
// Skips invalid compressed data until a full flush point can be found, or until all
// available input is skipped. No output is provided.
//
// inflateSync returns Z_OK if a full flush point has been found, Z_BUF_ERROR
// if no more input was provided, Z_DATA_ERROR if no flush point has been found,
// or Z_STREAM_ERROR if the stream structure was inconsistent. In the success
// case, the application may save the current current value of total_in which
// indicates where valid compressed data was found. In the error case, the
// application may repeatedly call inflateSync, providing more input each time,
// until success or end of the input data.
int inflateReset (z_streamp strm);
// This function is equivalent to inflateEnd followed by inflateInit,
// but does not free and reallocate all the internal decompression state.
// The stream will keep attributes that may have been set by inflateInit2.
//
// inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
// stream state was inconsistent (such as zalloc or state being NULL).
//
// checksum functions
// These functions are not related to compression but are exported
// anyway because they might be useful in applications using the
// compression library.
uLong adler32 (uLong adler, const Byte *buf, uInt len);
// Update a running Adler-32 checksum with the bytes buf[0..len-1] and
// return the updated checksum. If buf is NULL, this function returns
// the required initial value for the checksum.
// An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
// much faster. Usage example:
//
// uLong adler = adler32(0L, Z_NULL, 0);
//
// while (read_buffer(buffer, length) != EOF) {
// adler = adler32(adler, buffer, length);
// }
// if (adler != original_adler) error();
uLong ucrc32 (uLong crc, const Byte *buf, uInt len);
// Update a running crc with the bytes buf[0..len-1] and return the updated
// crc. If buf is NULL, this function returns the required initial value
// for the crc. Pre- and post-conditioning (one‘s complement) is performed
// within this function so it shouldn‘t be done by the application.
// Usage example:
//
// uLong crc = crc32(0L, Z_NULL, 0);
//
// while (read_buffer(buffer, length) != EOF) {
// crc = crc32(crc, buffer, length);
// }
// if (crc != original_crc) error();
const char *zError (int err);
int inflateSyncPoint (z_streamp z);
const uLong *get_crc_table (void);
typedef unsigned char uch;
typedef uch uchf;
typedef unsigned short ush;
typedef ush ushf;
typedef unsigned long ulg;
const char *const z_errmsg[10] = // indexed by 2-zlib_error
{
"need dictionary", // Z_NEED_DICT 2
"stream end", // Z_STREAM_END 1
"", // Z_OK 0
"file error", // Z_ERRNO (-1)
"stream error", // Z_STREAM_ERROR (-2)
"data error", // Z_DATA_ERROR (-3)
"insufficient memory", // Z_MEM_ERROR (-4)
"buffer error", // Z_BUF_ERROR (-5)
"incompatible version",// Z_VERSION_ERROR (-6)
""
};
#define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
#define ERR_RETURN(strm,err) return (strm->msg = (char*)ERR_MSG(err), (err))
// To be used only when the state is known to be valid
// common constants
#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES 2
// The three kinds of block type
#define MIN_MATCH 3
#define MAX_MATCH 258
// The minimum and maximum match lengths
#define PRESET_DICT 0x20 // preset dictionary flag in zlib header
// target dependencies
#define OS_CODE 0x0b // Window 95 & Windows NT
// functions
#define zmemzero(dest, len) memset(dest, 0, len)
// Diagnostic functions
#define LuAssert(cond,msg)
#define LuTrace(x)
#define LuTracev(x)
#define LuTracevv(x)
#define LuTracec(c,x)
#define LuTracecv(c,x)
typedef uLong (*check_func) (uLong check, const Byte *buf, uInt len);
voidpf zcalloc (voidpf opaque, unsigned items, unsigned size);
void zcfree (voidpf opaque, voidpf ptr);
#define ZALLOC(strm, items, size) (*((strm)->zalloc))((strm)->opaque, (items), (size))
#define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
//void ZFREE(z_streamp strm,voidpf addr)
//{ *((strm)->zfree))((strm)->opaque, addr);
//}
#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
// Huffman code lookup table entry--this entry is four bytes for machines
// that have 16-bit pointers (e.g. PC‘s in the small or medium model).
typedef struct inflate_huft_s inflate_huft;
struct inflate_huft_s
{
union
{
struct
{
Byte Exop; // number of extra bits or operation
Byte Bits; // number of bits in this code or subcode
} what;
uInt pad; // pad structure to a power of 2 (4 bytes for
} word; // 16-bit, 8 bytes for 32-bit int‘s)
uInt base; // literal, length base, distance base, or table offset
};
// Maximum size of dynamic tree. The maximum found in a long but non-
// exhaustive search was 1004 huft structures (850 for length/literals
// and 154 for distances, the latter actually the result of an
// exhaustive search). The actual maximum is not known, but the
// value below is more than safe.
#define MANY 1440
int inflate_trees_bits (
uInt *, // 19 code lengths
uInt *, // bits tree desired/actual depth
inflate_huft * *, // bits tree result
inflate_huft *, // space for trees
z_streamp); // for messages
int inflate_trees_dynamic (
uInt, // number of literal/length codes
uInt, // number of distance codes
uInt *, // that many (total) code lengths
uInt *, // literal desired/actual bit depth
uInt *, // distance desired/actual bit depth
inflate_huft * *, // literal/length tree result
inflate_huft * *, // distance tree result
inflate_huft *, // space for trees
z_streamp); // for messages
int inflate_trees_fixed (
uInt *, // literal desired/actual bit depth
uInt *, // distance desired/actual bit depth
const inflate_huft * *, // literal/length tree result
const inflate_huft * *, // distance tree result
z_streamp); // for memory allocation
struct inflate_blocks_state;
typedef struct inflate_blocks_state inflate_blocks_statef;
inflate_blocks_statef *inflate_blocks_new (
z_streamp z,
check_func c, // check function
uInt w); // window size
int inflate_blocks (
inflate_blocks_statef *,
z_streamp,
int); // initial return code
void inflate_blocks_reset (
inflate_blocks_statef *,
z_streamp,
uLong *); // check value on output
int inflate_blocks_free (
inflate_blocks_statef *,
z_streamp);
void inflate_set_dictionary (
inflate_blocks_statef *s,
const Byte *d, // dictionary
uInt n); // dictionary length
int inflate_blocks_sync_point (
inflate_blocks_statef *s);
struct inflate_codes_state;
typedef struct inflate_codes_state inflate_codes_statef;
inflate_codes_statef *inflate_codes_new (
uInt, uInt,
const inflate_huft *, const inflate_huft *,
z_streamp );
int inflate_codes (
inflate_blocks_statef *,
z_streamp,
int);
void inflate_codes_free (
inflate_codes_statef *,
z_streamp );
typedef enum
{
IBM_TYPE, // get type bits (3, including end bit)
IBM_LENS, // get lengths for stored
IBM_STORED, // processing stored block
IBM_TABLE, // get table lengths
IBM_BTREE, // get bit lengths tree for a dynamic block
IBM_DTREE, // get length, distance trees for a dynamic block
IBM_CODES, // processing fixed or dynamic block
IBM_DRY, // output remaining window bytes
IBM_DONE, // finished last block, done
IBM_BAD
} // got a data error--stuck here
inflate_block_mode;
// inflate blocks semi-private state
struct inflate_blocks_state
{
// mode
inflate_block_mode mode; // current inflate_block mode
// mode dependent information
union
{
uInt left; // if STORED, bytes left to copy
struct
{
uInt table; // table lengths (14 bits)
uInt index; // index into blens (or border)
uInt *blens; // bit lengths of codes
uInt bb; // bit length tree depth
inflate_huft *tb; // bit length decoding tree
} trees; // if DTREE, decoding info for trees
struct
{
inflate_codes_statef
*codes;
} decode; // if CODES, current state
} sub; // submode
uInt last; // true if this block is the last block
// mode independent information
uInt bitk; // bits in bit buffer
uLong bitb; // bit buffer
inflate_huft *hufts; // single malloc for tree space
Byte *window; // sliding window
Byte *end; // one byte after sliding window
Byte *read; // window read pointer
Byte *write; // window write pointer
check_func checkfn; // check function
uLong check; // check on output
};
// defines for inflate input/output
// update pointers and return
#define UPDBITS {s->bitb=b;s->bitk=k;}
#define UPDIN {z->avail_in=n;z->total_in+=(uLong)(p-z->next_in);z->next_in=p;}
#define UPDOUT {s->write=q;}
#define UPDATE {UPDBITS UPDIN UPDOUT}
#define LEAVE {UPDATE return inflate_flush(s,z,r);}
// get bytes and bits
#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
#define NEXTBYTE (n--,*p++)
#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
#define DUMPBITS(j) {b>>=(j);k-=(j);}
// output bytes
#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
#define LOADOUT {q=s->write;m=(uInt)WAVAIL;m;}
#define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
#define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
// load local pointers
#define LOAD {LOADIN LOADOUT}
// masks for lower bits (size given to avoid silly warnings with Visual C++)
// And‘ing with mask[n] masks the lower n bits
const uInt inflate_mask[17] =
{
0x0000,
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
// copy as much as possible from the sliding window to the output area
int inflate_flush (inflate_blocks_statef *, z_streamp, int);
int inflate_fast (uInt, uInt, const inflate_huft *, const inflate_huft *, inflate_blocks_statef *, z_streamp );
const uInt fixed_bl = 9;
const uInt fixed_bd = 5;
const inflate_huft fixed_tl[] =
{
{{{96, 7}}, 256}, {{{0, 8}}, 80}, {{{0, 8}}, 16}, {{{84, 8}}, 115},
{{{82, 7}}, 31}, {{{0, 8}}, 112}, {{{0, 8}}, 48}, {{{0, 9}}, 192},
{{{80, 7}}, 10}, {{{0, 8}}, 96}, {{{0, 8}}, 32}, {{{0, 9}}, 160},
{{{0, 8}}, 0}, {{{0, 8}}, 128}, {{{0, 8}}, 64}, {{{0, 9}}, 224},
{{{80, 7}}, 6}, {{{0, 8}}, 88}, {{{0, 8}}, 24}, {{{0, 9}}, 144},
{{{83, 7}}, 59}, {{{0, 8}}, 120}, {{{0, 8}}, 56}, {{{0, 9}}, 208},
{{{81, 7}}, 17}, {{{0, 8}}, 104}, {{{0, 8}}, 40}, {{{0, 9}}, 176},
{{{0, 8}}, 8}, {{{0, 8}}, 136}, {{{0, 8}}, 72}, {{{0, 9}}, 240},
{{{80, 7}}, 4}, {{{0, 8}}, 84}, {{{0, 8}}, 20}, {{{85, 8}}, 227},
{{{83, 7}}, 43}, {{{0, 8}}, 116}, {{{0, 8}}, 52}, {{{0, 9}}, 200},
{{{81, 7}}, 13}, {{{0, 8}}, 100}, {{{0, 8}}, 36}, {{{0, 9}}, 168},
{{{0, 8}}, 4}, {{{0, 8}}, 132}, {{{0, 8}}, 68}, {{{0, 9}}, 232},
{{{80, 7}}, 8}, {{{0, 8}}, 92}, {{{0, 8}}, 28}, {{{0, 9}}, 152},
{{{84, 7}}, 83}, {{{0, 8}}, 124}, {{{0, 8}}, 60}, {{{0, 9}}, 216},
{{{82, 7}}, 23}, {{{0, 8}}, 108}, {{{0, 8}}, 44}, {{{0, 9}}, 184},
{{{0, 8}}, 12}, {{{0, 8}}, 140}, {{{0, 8}}, 76}, {{{0, 9}}, 248},
{{{80, 7}}, 3}, {{{0, 8}}, 82}, {{{0, 8}}, 18}, {{{85, 8}}, 163},
{{{83, 7}}, 35}, {{{0, 8}}, 114}, {{{0, 8}}, 50}, {{{0, 9}}, 196},
{{{81, 7}}, 11}, {{{0, 8}}, 98}, {{{0, 8}}, 34}, {{{0, 9}}, 164},
{{{0, 8}}, 2}, {{{0, 8}}, 130}, {{{0, 8}}, 66}, {{{0, 9}}, 228},
{{{80, 7}}, 7}, {{{0, 8}}, 90}, {{{0, 8}}, 26}, {{{0, 9}}, 148},
{{{84, 7}}, 67}, {{{0, 8}}, 122}, {{{0, 8}}, 58}, {{{0, 9}}, 212},
{{{82, 7}}, 19}, {{{0, 8}}, 106}, {{{0, 8}}, 42}, {{{0, 9}}, 180},
{{{0, 8}}, 10}, {{{0, 8}}, 138}, {{{0, 8}}, 74}, {{{0, 9}}, 244},
{{{80, 7}}, 5}, {{{0, 8}}, 86}, {{{0, 8}}, 22}, {{{192, 8}}, 0},
{{{83, 7}}, 51}, {{{0, 8}}, 118}, {{{0, 8}}, 54}, {{{0, 9}}, 204},
{{{81, 7}}, 15}, {{{0, 8}}, 102}, {{{0, 8}}, 38}, {{{0, 9}}, 172},
{{{0, 8}}, 6}, {{{0, 8}}, 134}, {{{0, 8}}, 70}, {{{0, 9}}, 236},
{{{80, 7}}, 9}, {{{0, 8}}, 94}, {{{0, 8}}, 30}, {{{0, 9}}, 156},
{{{84, 7}}, 99}, {{{0, 8}}, 126}, {{{0, 8}}, 62}, {{{0, 9}}, 220},
{{{82, 7}}, 27}, {{{0, 8}}, 110}, {{{0, 8}}, 46}, {{{0, 9}}, 188},
{{{0, 8}}, 14}, {{{0, 8}}, 142}, {{{0, 8}}, 78}, {{{0, 9}}, 252},
{{{96, 7}}, 256}, {{{0, 8}}, 81}, {{{0, 8}}, 17}, {{{85, 8}}, 131},
{{{82, 7}}, 31}, {{{0, 8}}, 113}, {{{0, 8}}, 49}, {{{0, 9}}, 194},
{{{80, 7}}, 10}, {{{0, 8}}, 97}, {{{0, 8}}, 33}, {{{0, 9}}, 162},
{{{0, 8}}, 1}, {{{0, 8}}, 129}, {{{0, 8}}, 65}, {{{0, 9}}, 226},
{{{80, 7}}, 6}, {{{0, 8}}, 89}, {{{0, 8}}, 25}, {{{0, 9}}, 146},
{{{83, 7}}, 59}, {{{0, 8}}, 121}, {{{0, 8}}, 57}, {{{0, 9}}, 210},
{{{81, 7}}, 17}, {{{0, 8}}, 105}, {{{0, 8}}, 41}, {{{0, 9}}, 178},
{{{0, 8}}, 9}, {{{0, 8}}, 137}, {{{0, 8}}, 73}, {{{0, 9}}, 242},
{{{80, 7}}, 4}, {{{0, 8}}, 85}, {{{0, 8}}, 21}, {{{80, 8}}, 258},
{{{83, 7}}, 43}, {{{0, 8}}, 117}, {{{0, 8}}, 53}, {{{0, 9}}, 202},
{{{81, 7}}, 13}, {{{0, 8}}, 101}, {{{0, 8}}, 37}, {{{0, 9}}, 170},
{{{0, 8}}, 5}, {{{0, 8}}, 133}, {{{0, 8}}, 69}, {{{0, 9}}, 234},
{{{80, 7}}, 8}, {{{0, 8}}, 93}, {{{0, 8}}, 29}, {{{0, 9}}, 154},
{{{84, 7}}, 83}, {{{0, 8}}, 125}, {{{0, 8}}, 61}, {{{0, 9}}, 218},
{{{82, 7}}, 23}, {{{0, 8}}, 109}, {{{0, 8}}, 45}, {{{0, 9}}, 186},
{{{0, 8}}, 13}, {{{0, 8}}, 141}, {{{0, 8}}, 77}, {{{0, 9}}, 250},
{{{80, 7}}, 3}, {{{0, 8}}, 83}, {{{0, 8}}, 19}, {{{85, 8}}, 195},
{{{83, 7}}, 35}, {{{0, 8}}, 115}, {{{0, 8}}, 51}, {{{0, 9}}, 198},
{{{81, 7}}, 11}, {{{0, 8}}, 99}, {{{0, 8}}, 35}, {{{0, 9}}, 166},
{{{0, 8}}, 3}, {{{0, 8}}, 131}, {{{0, 8}}, 67}, {{{0, 9}}, 230},
{{{80, 7}}, 7}, {{{0, 8}}, 91}, {{{0, 8}}, 27}, {{{0, 9}}, 150},
{{{84, 7}}, 67}, {{{0, 8}}, 123}, {{{0, 8}}, 59}, {{{0, 9}}, 214},
{{{82, 7}}, 19}, {{{0, 8}}, 107}, {{{0, 8}}, 43}, {{{0, 9}}, 182},
{{{0, 8}}, 11}, {{{0, 8}}, 139}, {{{0, 8}}, 75}, {{{0, 9}}, 246},
{{{80, 7}}, 5}, {{{0, 8}}, 87}, {{{0, 8}}, 23}, {{{192, 8}}, 0},
{{{83, 7}}, 51}, {{{0, 8}}, 119}, {{{0, 8}}, 55}, {{{0, 9}}, 206},
{{{81, 7}}, 15}, {{{0, 8}}, 103}, {{{0, 8}}, 39}, {{{0, 9}}, 174},
{{{0, 8}}, 7}, {{{0, 8}}, 135}, {{{0, 8}}, 71}, {{{0, 9}}, 238},
{{{80, 7}}, 9}, {{{0, 8}}, 95}, {{{0, 8}}, 31}, {{{0, 9}}, 158},
{{{84, 7}}, 99}, {{{0, 8}}, 127}, {{{0, 8}}, 63}, {{{0, 9}}, 222},
{{{82, 7}}, 27}, {{{0, 8}}, 111}, {{{0, 8}}, 47}, {{{0, 9}}, 190},
{{{0, 8}}, 15}, {{{0, 8}}, 143}, {{{0, 8}}, 79}, {{{0, 9}}, 254},
{{{96, 7}}, 256}, {{{0, 8}}, 80}, {{{0, 8}}, 16}, {{{84, 8}}, 115},
{{{82, 7}}, 31}, {{{0, 8}}, 112}, {{{0, 8}}, 48}, {{{0, 9}}, 193},
{{{80, 7}}, 10}, {{{0, 8}}, 96}, {{{0, 8}}, 32}, {{{0, 9}}, 161},
{{{0, 8}}, 0}, {{{0, 8}}, 128}, {{{0, 8}}, 64}, {{{0, 9}}, 225},
{{{80, 7}}, 6}, {{{0, 8}}, 88}, {{{0, 8}}, 24}, {{{0, 9}}, 145},
{{{83, 7}}, 59}, {{{0, 8}}, 120}, {{{0, 8}}, 56}, {{{0, 9}}, 209},
{{{81, 7}}, 17}, {{{0, 8}}, 104}, {{{0, 8}}, 40}, {{{0, 9}}, 177},
{{{0, 8}}, 8}, {{{0, 8}}, 136}, {{{0, 8}}, 72}, {{{0, 9}}, 241},
{{{80, 7}}, 4}, {{{0, 8}}, 84}, {{{0, 8}}, 20}, {{{85, 8}}, 227},
{{{83, 7}}, 43}, {{{0, 8}}, 116}, {{{0, 8}}, 52}, {{{0, 9}}, 201},
{{{81, 7}}, 13}, {{{0, 8}}, 100}, {{{0, 8}}, 36}, {{{0, 9}}, 169},
{{{0, 8}}, 4}, {{{0, 8}}, 132}, {{{0, 8}}, 68}, {{{0, 9}}, 233},
{{{80, 7}}, 8}, {{{0, 8}}, 92}, {{{0, 8}}, 28}, {{{0, 9}}, 153},
{{{84, 7}}, 83}, {{{0, 8}}, 124}, {{{0, 8}}, 60}, {{{0, 9}}, 217},
{{{82, 7}}, 23}, {{{0, 8}}, 108}, {{{0, 8}}, 44}, {{{0, 9}}, 185},
{{{0, 8}}, 12}, {{{0, 8}}, 140}, {{{0, 8}}, 76}, {{{0, 9}}, 249},
{{{80, 7}}, 3}, {{{0, 8}}, 82}, {{{0, 8}}, 18}, {{{85, 8}}, 163},
{{{83, 7}}, 35}, {{{0, 8}}, 114}, {{{0, 8}}, 50}, {{{0, 9}}, 197},
{{{81, 7}}, 11}, {{{0, 8}}, 98}, {{{0, 8}}, 34}, {{{0, 9}}, 165},
{{{0, 8}}, 2}, {{{0, 8}}, 130}, {{{0, 8}}, 66}, {{{0, 9}}, 229},
{{{80, 7}}, 7}, {{{0, 8}}, 90}, {{{0, 8}}, 26}, {{{0, 9}}, 149},
{{{84, 7}}, 67}, {{{0, 8}}, 122}, {{{0, 8}}, 58}, {{{0, 9}}, 213},
{{{82, 7}}, 19}, {{{0, 8}}, 106}, {{{0, 8}}, 42}, {{{0, 9}}, 181},
{{{0, 8}}, 10}, {{{0, 8}}, 138}, {{{0, 8}}, 74}, {{{0, 9}}, 245},
{{{80, 7}}, 5}, {{{0, 8}}, 86}, {{{0, 8}}, 22}, {{{192, 8}}, 0},
{{{83, 7}}, 51}, {{{0, 8}}, 118}, {{{0, 8}}, 54}, {{{0, 9}}, 205},
{{{81, 7}}, 15}, {{{0, 8}}, 102}, {{{0, 8}}, 38}, {{{0, 9}}, 173},
{{{0, 8}}, 6}, {{{0, 8}}, 134}, {{{0, 8}}, 70}, {{{0, 9}}, 237},
{{{80, 7}}, 9}, {{{0, 8}}, 94}, {{{0, 8}}, 30}, {{{0, 9}}, 157},
{{{84, 7}}, 99}, {{{0, 8}}, 126}, {{{0, 8}}, 62}, {{{0, 9}}, 221},
{{{82, 7}}, 27}, {{{0, 8}}, 110}, {{{0, 8}}, 46}, {{{0, 9}}, 189},
{{{0, 8}}, 14}, {{{0, 8}}, 142}, {{{0, 8}}, 78}, {{{0, 9}}, 253},
{{{96, 7}}, 256}, {{{0, 8}}, 81}, {{{0, 8}}, 17}, {{{85, 8}}, 131},
{{{82, 7}}, 31}, {{{0, 8}}, 113}, {{{0, 8}}, 49}, {{{0, 9}}, 195},
{{{80, 7}}, 10}, {{{0, 8}}, 97}, {{{0, 8}}, 33}, {{{0, 9}}, 163},
{{{0, 8}}, 1}, {{{0, 8}}, 129}, {{{0, 8}}, 65}, {{{0, 9}}, 227},
{{{80, 7}}, 6}, {{{0, 8}}, 89}, {{{0, 8}}, 25}, {{{0, 9}}, 147},
{{{83, 7}}, 59}, {{{0, 8}}, 121}, {{{0, 8}}, 57}, {{{0, 9}}, 211},
{{{81, 7}}, 17}, {{{0, 8}}, 105}, {{{0, 8}}, 41}, {{{0, 9}}, 179},
{{{0, 8}}, 9}, {{{0, 8}}, 137}, {{{0, 8}}, 73}, {{{0, 9}}, 243},
{{{80, 7}}, 4}, {{{0, 8}}, 85}, {{{0, 8}}, 21}, {{{80, 8}}, 258},
{{{83, 7}}, 43}, {{{0, 8}}, 117}, {{{0, 8}}, 53}, {{{0, 9}}, 203},
{{{81, 7}}, 13}, {{{0, 8}}, 101}, {{{0, 8}}, 37}, {{{0, 9}}, 171},
{{{0, 8}}, 5}, {{{0, 8}}, 133}, {{{0, 8}}, 69}, {{{0, 9}}, 235},
{{{80, 7}}, 8}, {{{0, 8}}, 93}, {{{0, 8}}, 29}, {{{0, 9}}, 155},
{{{84, 7}}, 83}, {{{0, 8}}, 125}, {{{0, 8}}, 61}, {{{0, 9}}, 219},
{{{82, 7}}, 23}, {{{0, 8}}, 109}, {{{0, 8}}, 45}, {{{0, 9}}, 187},
{{{0, 8}}, 13}, {{{0, 8}}, 141}, {{{0, 8}}, 77}, {{{0, 9}}, 251},
{{{80, 7}}, 3}, {{{0, 8}}, 83}, {{{0, 8}}, 19}, {{{85, 8}}, 195},
{{{83, 7}}, 35}, {{{0, 8}}, 115}, {{{0, 8}}, 51}, {{{0, 9}}, 199},
{{{81, 7}}, 11}, {{{0, 8}}, 99}, {{{0, 8}}, 35}, {{{0, 9}}, 167},
{{{0, 8}}, 3}, {{{0, 8}}, 131}, {{{0, 8}}, 67}, {{{0, 9}}, 231},
{{{80, 7}}, 7}, {{{0, 8}}, 91}, {{{0, 8}}, 27}, {{{0, 9}}, 151},
{{{84, 7}}, 67}, {{{0, 8}}, 123}, {{{0, 8}}, 59}, {{{0, 9}}, 215},
{{{82, 7}}, 19}, {{{0, 8}}, 107}, {{{0, 8}}, 43}, {{{0, 9}}, 183},
{{{0, 8}}, 11}, {{{0, 8}}, 139}, {{{0, 8}}, 75}, {{{0, 9}}, 247},
{{{80, 7}}, 5}, {{{0, 8}}, 87}, {{{0, 8}}, 23}, {{{192, 8}}, 0},
{{{83, 7}}, 51}, {{{0, 8}}, 119}, {{{0, 8}}, 55}, {{{0, 9}}, 207},
{{{81, 7}}, 15}, {{{0, 8}}, 103}, {{{0, 8}}, 39}, {{{0, 9}}, 175},
{{{0, 8}}, 7}, {{{0, 8}}, 135}, {{{0, 8}}, 71}, {{{0, 9}}, 239},
{{{80, 7}}, 9}, {{{0, 8}}, 95}, {{{0, 8}}, 31}, {{{0, 9}}, 159},
{{{84, 7}}, 99}, {{{0, 8}}, 127}, {{{0, 8}}, 63}, {{{0, 9}}, 223},
{{{82, 7}}, 27}, {{{0, 8}}, 111}, {{{0, 8}}, 47}, {{{0, 9}}, 191},
{{{0, 8}}, 15}, {{{0, 8}}, 143}, {{{0, 8}}, 79}, {{{0, 9}}, 255}
};
const inflate_huft fixed_td[] =
{
{{{80, 5}}, 1}, {{{87, 5}}, 257}, {{{83, 5}}, 17}, {{{91, 5}}, 4097},
{{{81, 5}}, 5}, {{{89, 5}}, 1025}, {{{85, 5}}, 65}, {{{93, 5}}, 16385},
{{{80, 5}}, 3}, {{{88, 5}}, 513}, {{{84, 5}}, 33}, {{{92, 5}}, 8193},
{{{82, 5}}, 9}, {{{90, 5}}, 2049}, {{{86, 5}}, 129}, {{{192, 5}}, 24577},
{{{80, 5}}, 2}, {{{87, 5}}, 385}, {{{83, 5}}, 25}, {{{91, 5}}, 6145},
{{{81, 5}}, 7}, {{{89, 5}}, 1537}, {{{85, 5}}, 97}, {{{93, 5}}, 24577},
{{{80, 5}}, 4}, {{{88, 5}}, 769}, {{{84, 5}}, 49}, {{{92, 5}}, 12289},
{{{82, 5}}, 13}, {{{90, 5}}, 3073}, {{{86, 5}}, 193}, {{{192, 5}}, 24577}
};
// copy as much as possible from the sliding window to the output area
int inflate_flush(inflate_blocks_statef *s, z_streamp z, int r)
{
uInt n;
Byte *p;
Byte *q;
// local copies of source and destination pointers
p = z->next_out;
q = s->read;
// compute number of bytes to copy as far as end of window
n = (uInt)((q <= s->write ? s->write : s->end) - q);
if (n > z->avail_out) n = z->avail_out;
if (n && r == Z_BUF_ERROR) r = Z_OK;
// update counters
z->avail_out -= n;
z->total_out += n;
// update check information
if (s->checkfn != Z_NULL)
z->adler = s->check = (*s->checkfn)(s->check, q, n);
// copy as far as end of window
if (n != 0) // check for n!=0 to avoid waking up CodeGuard
{
memcpy(p, q, n);
p += n;
q += n;
}
// see if more to copy at beginning of window
if (q == s->end)
{
// wrap pointers
q = s->window;
if (s->write == s->end)
s->write = s->window;
// compute bytes to copy
n = (uInt)(s->write - q);
if (n > z->avail_out) n = z->avail_out;
if (n && r == Z_BUF_ERROR) r = Z_OK;
// update counters
z->avail_out -= n;
z->total_out += n;
// update check information
if (s->checkfn != Z_NULL)
z->adler = s->check = (*s->checkfn)(s->check, q, n);
// copy
if (n != 0)
{
memcpy(p, q, n);
p += n;
q += n;
}
}
// update pointers
z->next_out = p;
s->read = q;
// done
return r;
}
// simplify the use of the inflate_huft type with some defines
#define exop word.what.Exop
#define bits word.what.Bits
typedef enum // waiting for "i:"=input, "o:"=output, "x:"=nothing
{
START, // x: set up for LEN
LEN, // i: get length/literal/eob next
LENEXT, // i: getting length extra (have base)
DIST, // i: get distance next
DISTEXT, // i: getting distance extra
COPY, // o: copying bytes in window, waiting for space
LIT, // o: got literal, waiting for output space
WASH, // o: got eob, possibly still output waiting
END, // x: got eob and all data flushed
BADCODE
} // x: got error
inflate_codes_mode;
// inflate codes private state
struct inflate_codes_state
{
// mode
inflate_codes_mode mode; // current inflate_codes mode
// mode dependent information
uInt len;
union
{
struct
{
const inflate_huft *tree; // pointer into tree
uInt need; // bits needed
} code; // if LEN or DIST, where in tree
uInt lit; // if LIT, literal
struct
{
uInt get; // bits to get for extra
uInt dist; // distance back to copy from
} copy; // if EXT or COPY, where and how much
} sub; // submode
// mode independent information
Byte lbits; // ltree bits decoded per branch
Byte dbits; // dtree bits decoder per branch
const inflate_huft *ltree; // literal/length/eob tree
const inflate_huft *dtree; // distance tree
};
inflate_codes_statef *inflate_codes_new(
uInt bl, uInt bd,
const inflate_huft *tl,
const inflate_huft *td, // need separate declaration for Borland C++
z_streamp z)
{
inflate_codes_statef *c;
if ((c = (inflate_codes_statef *)
ZALLOC(z, 1, sizeof(struct inflate_codes_state))) != Z_NULL)
{
c->mode = START;
c->lbits = (Byte)bl;
c->dbits = (Byte)bd;
c->ltree = tl;
c->dtree = td;
LuTracev((stderr, "inflate: codes new\n"));
}
return c;
}
int inflate_codes(inflate_blocks_statef *s, z_streamp z, int r)
{
uInt j; // temporary storage
const inflate_huft *t; // temporary pointer
uInt e; // extra bits or operation
uLong b; // bit buffer
uInt k; // bits in bit buffer
Byte *p; // input data pointer
uInt n; // bytes available there
Byte *q; // output window write pointer
uInt m; // bytes to end of window or read pointer
Byte *f; // pointer to copy strings from
inflate_codes_statef *c = s->sub.decode.codes; // codes state
// copy input/output information to locals (UPDATE macro restores)
LOAD
// process input and output based on current state
for (;;) switch (c->mode)
{
// waiting for "i:"=input, "o:"=output, "x:"=nothing
case START: // x: set up for LEN
#ifndef SLOW
if (m >= 258 && n >= 10)
{
UPDATE
r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
LOAD
if (r != Z_OK)
{
c->mode = r == Z_STREAM_END ? WASH : BADCODE;
break;
}
}
#endif // !SLOW
c->sub.code.need = c->lbits;
c->sub.code.tree = c->ltree;
c->mode = LEN;
case LEN: // i: get length/literal/eob next
j = c->sub.code.need;
NEEDBITS(j)
t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
DUMPBITS(t->bits)
e = (uInt)(t->exop);
if (e == 0) // literal
{
c->sub.lit = t->base;
LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
"inflate: literal ‘%c‘\n" :
"inflate: literal 0x%02x\n", t->base));
c->mode = LIT;
break;
}
if (e & 16) // length
{
c->sub.copy.get = e & 15;
c->len = t->base;
c->mode = LENEXT;
break;
}
if ((e & 64) == 0) // next table
{
c->sub.code.need = e;
c->sub.code.tree = t + t->base;
break;
}
if (e & 32) // end of block
{
LuTracevv((stderr, "inflate: end of block\n"));
c->mode = WASH;
break;
}
c->mode = BADCODE; // invalid code
z->msg = (char *)"invalid literal/length code";
r = Z_DATA_ERROR;
LEAVE
case LENEXT: // i: getting length extra (have base)
j = c->sub.copy.get;
NEEDBITS(j)
c->len += (uInt)b & inflate_mask[j];
DUMPBITS(j)
c->sub.code.need = c->dbits;
c->sub.code.tree = c->dtree;
LuTracevv((stderr, "inflate: length %u\n", c->len));
c->mode = DIST;
case DIST: // i: get distance next
j = c->sub.code.need;
NEEDBITS(j)
t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
DUMPBITS(t->bits)
e = (uInt)(t->exop);
if (e & 16) // distance
{
c->sub.copy.get = e & 15;
c->sub.copy.dist = t->base;
c->mode = DISTEXT;
break;
}
if ((e & 64) == 0) // next table
{
c->sub.code.need = e;
c->sub.code.tree = t + t->base;
break;
}
c->mode = BADCODE; // invalid code
z->msg = (char *)"invalid distance code";
r = Z_DATA_ERROR;
LEAVE
case DISTEXT: // i: getting distance extra
j = c->sub.copy.get;
NEEDBITS(j)
c->sub.copy.dist += (uInt)b & inflate_mask[j];
DUMPBITS(j)
LuTracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
c->mode = COPY;
case COPY: // o: copying bytes in window, waiting for space
f = q - c->sub.copy.dist;
while (f < s->window) // modulo window size-"while" instead
f += s->end - s->window; // of "if" handles invalid distances
while (c->len)
{
NEEDOUT
OUTBYTE(*f++)
if (f == s->end)
f = s->window;
c->len--;
}
c->mode = START;
break;
case LIT: // o: got literal, waiting for output space
NEEDOUT
OUTBYTE(c->sub.lit)
c->mode = START;
break;
case WASH: // o: got eob, possibly more output
if (k > 7) // return unused byte, if any
{
//Assert(k < 16, "inflate_codes grabbed too many bytes")
k -= 8;
n++;
p--; // can always return one
}
FLUSH
if (s->read != s->write)
LEAVE
c->mode = END;
case END:
r = Z_STREAM_END;
LEAVE
case BADCODE: // x: got error
r = Z_DATA_ERROR;
LEAVE
default:
r = Z_STREAM_ERROR;
LEAVE
}
}
void inflate_codes_free(inflate_codes_statef *c, z_streamp z)
{
ZFREE(z, c);
LuTracev((stderr, "inflate: codes free\n"));
}
// infblock.c -- interpret and process block types to last block
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h
//struct inflate_codes_state {int dummy;}; // for buggy compilers
// Table for deflate from PKZIP‘s appnote.txt.
const uInt border[] = // Order of the bit length code lengths
{
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
//
// Notes beyond the 1.93a appnote.txt:
//
// 1. Distance pointers never point before the beginning of the output stream.
// 2. Distance pointers can point back across blocks, up to 32k away.
// 3. There is an implied maximum of 7 bits for the bit length table and
// 15 bits for the actual data.
// 4. If only one code exists, then it is encoded using one bit. (Zero
// would be more efficient, but perhaps a little confusing.) If two
// codes exist, they are coded using one bit each (0 and 1).
// 5. There is no way of sending zero distance codes--a dummy must be
// sent if there are none. (History: a pre 2.0 version of PKZIP would
// store blocks with no distance codes, but this was discovered to be
// too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
// zero distance codes, which is sent as one code of zero bits in
// length.
// 6. There are up to 286 literal/length codes. Code 256 represents the
// end-of-block. Note however that the static length tree defines
// 288 codes just to fill out the Huffman codes. Codes 286 and 287
// cannot be used though, since there is no length base or extra bits
// defined for them. Similarily, there are up to 30 distance codes.
// However, static trees define 32 codes (all 5 bits) to fill out the
// Huffman codes, but the last two had better not show up in the data.
// 7. Unzip can check dynamic Huffman blocks for complete code sets.
// The exception is that a single code would not be complete (see #4).
// 8. The five bits following the block type is really the number of
// literal codes sent minus 257.
// 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
// (1+6+6). Therefore, to output three times the length, you output
// three codes (1+1+1), whereas to output four times the same length,
// you only need two codes (1+3). Hmm.
//10. In the tree reconstruction algorithm, Code = Code + Increment
// only if BitLength(i) is not zero. (Pretty obvious.)
//11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
//12. Note: length code 284 can represent 227-258, but length code 285
// really is 258. The last length deserves its own, short code
// since it gets used a lot in very redundant files. The length
// 258 is special since 258 - 3 (the min match length) is 255.
//13. The literal/length and distance code bit lengths are read as a
// single stream of lengths. It is possible (and advantageous) for
// a repeat code (16, 17, or 18) to go across the boundary between
// the two sets of lengths.
void inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLong *c)
{
if (c != Z_NULL)
*c = s->check;
if (s->mode == IBM_BTREE || s->mode == IBM_DTREE)
ZFREE(z, s->sub.trees.blens);
if (s->mode == IBM_CODES)
inflate_codes_free(s->sub.decode.codes, z);
s->mode = IBM_TYPE;
s->bitk = 0;
s->bitb = 0;
s->read = s->write = s->window;
if (s->checkfn != Z_NULL)
z->adler = s->check = (*s->checkfn)(0L, (const Byte *)Z_NULL, 0);
LuTracev((stderr, "inflate: blocks reset\n"));
}
inflate_blocks_statef *inflate_blocks_new(z_streamp z, check_func c, uInt w)
{
inflate_blocks_statef *s;
if ((s = (inflate_blocks_statef *)ZALLOC
(z, 1, sizeof(struct inflate_blocks_state))) == Z_NULL)
return s;
if ((s->hufts =
(inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
{
ZFREE(z, s);
return Z_NULL;
}
if ((s->window = (Byte *)ZALLOC(z, 1, w)) == Z_NULL)
{
ZFREE(z, s->hufts);
ZFREE(z, s);
return Z_NULL;
}
s->end = s->window + w;
s->checkfn = c;
s->mode = IBM_TYPE;
LuTracev((stderr, "inflate: blocks allocated\n"));
inflate_blocks_reset(s, z, Z_NULL);
return s;
}
int inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r)
{
uInt t; // temporary storage
uLong b; // bit buffer
uInt k; // bits in bit buffer
Byte *p; // input data pointer
uInt n; // bytes available there
Byte *q; // output window write pointer
uInt m; // bytes to end of window or read pointer
// copy input/output information to locals (UPDATE macro restores)
LOAD
// process input based on current state
for (;;) switch (s->mode)
{
case IBM_TYPE:
NEEDBITS(3)
t = (uInt)b & 7;
s->last = t & 1;
switch (t >> 1)
{
case 0: // stored
LuTracev((stderr, "inflate: stored block%s\n",
s->last ? " (last)" : ""));
DUMPBITS(3)
t = k & 7; // go to byte boundary
DUMPBITS(t)
s->mode = IBM_LENS; // get length of stored block
break;
case 1: // fixed
LuTracev((stderr, "inflate: fixed codes block%s\n",
s->last ? " (last)" : ""));
{
uInt bl, bd;
const inflate_huft *tl, *td;
inflate_trees_fixed(&bl, &bd, &tl, &td, z);
s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
if (s->sub.decode.codes == Z_NULL)
{
r = Z_MEM_ERROR;
LEAVE
}
}
DUMPBITS(3)
s->mode = IBM_CODES;
break;
case 2: // dynamic
LuTracev((stderr, "inflate: dynamic codes block%s\n",
s->last ? " (last)" : ""));
DUMPBITS(3)
s->mode = IBM_TABLE;
break;
case 3: // illegal
DUMPBITS(3)
s->mode = IBM_BAD;
z->msg = (char *)"invalid block type";
r = Z_DATA_ERROR;
LEAVE
}
break;
case IBM_LENS:
NEEDBITS(32)
if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
{
s->mode = IBM_BAD;
z->msg = (char *)"invalid stored block lengths";
r = Z_DATA_ERROR;
LEAVE
}
s->sub.left = (uInt)b & 0xffff;
b = k = 0; // dump bits
LuTracev((stderr, "inflate: stored length %u\n", s->sub.left));
s->mode = s->sub.left ? IBM_STORED : (s->last ? IBM_DRY : IBM_TYPE);
break;
case IBM_STORED:
if (n == 0)
LEAVE
NEEDOUT
t = s->sub.left;
if (t > n) t = n;
if (t > m) t = m;
memcpy(q, p, t);
p += t;
n -= t;
q += t;
m -= t;
if ((s->sub.left -= t) != 0)
break;
LuTracev((stderr, "inflate: stored end, %lu total out\n",
z->total_out + (q >= s->read ? q - s->read :
(s->end - s->read) + (q - s->window))));
s->mode = s->last ? IBM_DRY : IBM_TYPE;
break;
case IBM_TABLE:
NEEDBITS(14)
s->sub.trees.table = t = (uInt)b & 0x3fff;
// remove this section to workaround bug in pkzip
if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
{
s->mode = IBM_BAD;
z->msg = (char *)"too many length or distance symbols";
r = Z_DATA_ERROR;
LEAVE
}
// end remove
t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
if ((s->sub.trees.blens = (uInt *)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
{
r = Z_MEM_ERROR;
LEAVE
}
DUMPBITS(14)
s->sub.trees.index = 0;
LuTracev((stderr, "inflate: table sizes ok\n"));
s->mode = IBM_BTREE;
case IBM_BTREE:
while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
{
NEEDBITS(3)
s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
DUMPBITS(3)
}
while (s->sub.trees.index < 19)
s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
s->sub.trees.bb = 7;
t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
&s->sub.trees.tb, s->hufts, z);
if (t != Z_OK)
{
r = t;
if (r == Z_DATA_ERROR)
{
ZFREE(z, s->sub.trees.blens);
s->mode = IBM_BAD;
}
LEAVE
}
s->sub.trees.index = 0;
LuTracev((stderr, "inflate: bits tree ok\n"));
s->mode = IBM_DTREE;
case IBM_DTREE:
while (t = s->sub.trees.table,
s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
{
inflate_huft *h;
uInt i, j, c;
t = s->sub.trees.bb;
NEEDBITS(t)
h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
t = h->bits;
c = h->base;
if (c < 16)
{
DUMPBITS(t)
s->sub.trees.blens[s->sub.trees.index++] = c;
}
else // c == 16..18
{
i = c == 18 ? 7 : c - 14;
j = c == 18 ? 11 : 3;
NEEDBITS(t + i)
DUMPBITS(t)
j += (uInt)b & inflate_mask[i];
DUMPBITS(i)
i = s->sub.trees.index;
t = s->sub.trees.table;
if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
(c == 16 && i < 1))
{
ZFREE(z, s->sub.trees.blens);
s->mode = IBM_BAD;
z->msg = (char *)"invalid bit length repeat";
r = Z_DATA_ERROR;
LEAVE
}
c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
do
{
s->sub.trees.blens[i++] = c;
} while (--j);
s->sub.trees.index = i;
}
}
s->sub.trees.tb = Z_NULL;
{
uInt bl, bd;
inflate_huft *tl, *td;
inflate_codes_statef *c;
bl = 9; // must be <= 9 for lookahead assumptions
bd = 6; // must be <= 9 for lookahead assumptions
t = s->sub.trees.table;
t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
s->sub.trees.blens, &bl, &bd, &tl, &td,
s->hufts, z);
if (t != Z_OK)
{
if (t == (uInt)Z_DATA_ERROR)
{
ZFREE(z, s->sub.trees.blens);
s->mode = IBM_BAD;
}
r = t;
LEAVE
}
LuTracev((stderr, "inflate: trees ok\n"));
if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
{
r = Z_MEM_ERROR;
LEAVE
}
s->sub.decode.codes = c;
}
ZFREE(z, s->sub.trees.blens);
s->mode = IBM_CODES;
case IBM_CODES:
UPDATE
if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
return inflate_flush(s, z, r);
r = Z_OK;
inflate_codes_free(s->sub.decode.codes, z);
LOAD
LuTracev((stderr, "inflate: codes end, %lu total out\n",
z->total_out + (q >= s->read ? q - s->read :
(s->end - s->read) + (q - s->window))));
if (!s->last)
{
s->mode = IBM_TYPE;
break;
}
s->mode = IBM_DRY;
case IBM_DRY:
FLUSH
if (s->read != s->write)
LEAVE
s->mode = IBM_DONE;
case IBM_DONE:
r = Z_STREAM_END;
LEAVE
case IBM_BAD:
r = Z_DATA_ERROR;
LEAVE
default:
r = Z_STREAM_ERROR;
LEAVE
}
}
int inflate_blocks_free(inflate_blocks_statef *s, z_streamp z)
{
inflate_blocks_reset(s, z, Z_NULL);
ZFREE(z, s->window);
ZFREE(z, s->hufts);
ZFREE(z, s);
LuTracev((stderr, "inflate: blocks freed\n"));
return Z_OK;
}
// inftrees.c -- generate Huffman trees for efficient decoding
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h
//
extern const char inflate_copyright[] =
" inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
// If you use the zlib library in a product, an acknowledgment is welcome
// in the documentation of your product. If for some reason you cannot
// include such an acknowledgment, I would appreciate that you keep this
// copyright string in the executable of your product.
int huft_build (
uInt *, // code lengths in bits
uInt, // number of codes
uInt, // number of "simple" codes
const uInt *, // list of base values for non-simple codes
const uInt *, // list of extra bits for non-simple codes
inflate_huft **,// result: starting table
uInt *, // maximum lookup bits (returns actual)
inflate_huft *, // space for trees
uInt *, // hufts used in space
uInt * ); // space for values
// Tables for deflate from PKZIP‘s appnote.txt.
const uInt cplens[31] = // Copy lengths for literal codes 257..285
{
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
};
// see note #13 above about 258
const uInt cplext[31] = // Extra bits for literal codes 257..285
{
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112
}; // 112==invalid
const uInt cpdist[30] = // Copy offsets for distance codes 0..29
{
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577
};
const uInt cpdext[30] = // Extra bits for distance codes
{
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13
};
//
// Huffman code decoding is performed using a multi-level table lookup.
// The fastest way to decode is to simply build a lookup table whose
// size is determined by the longest code. However, the time it takes
// to build this table can also be a factor if the data being decoded
// is not very long. The most common codes are necessarily the
// shortest codes, so those codes dominate the decoding time, and hence
// the speed. The idea is you can have a shorter table that decodes the
// shorter, more probable codes, and then point to subsidiary tables for
// the longer codes. The time it costs to decode the longer codes is
// then traded against the time it takes to make longer tables.
//
// This results of this trade are in the variables lbits and dbits
// below. lbits is the number of bits the first level table for literal/
// length codes can decode in one step, and dbits is the same thing for
// the distance codes. Subsequent tables are also less than or equal to
// those sizes. These values may be adjusted either when all of the
// codes are shorter than that, in which case the longest code length in
// bits is used, or when the shortest code is *longer* than the requested
// table size, in which case the length of the shortest code in bits is
// used.
//
// There are two different values for the two tables, since they code a
// different number of possibilities each. The literal/length table
// codes 286 possible values, or in a flat code, a little over eight
// bits. The distance table codes 30 possible values, or a little less
// than five bits, flat. The optimum values for speed end up being
// about one bit more than those, so lbits is 8+1 and dbits is 5+1.
// The optimum values may differ though from machine to machine, and
// possibly even between compilers. Your mileage may vary.
//
// If BMAX needs to be larger than 16, then h and x[] should be uLong.
#define BMAX 15 // maximum bit length of any code
int huft_build(
uInt *b, // code lengths in bits (all assumed <= BMAX)
uInt n, // number of codes (assumed <= 288)
uInt s, // number of simple-valued codes (0..s-1)
const uInt *d, // list of base values for non-simple codes
const uInt *e, // list of extra bits for non-simple codes
inflate_huft * *t, // result: starting table
uInt *m, // maximum lookup bits, returns actual
inflate_huft *hp, // space for trees
uInt *hn, // hufts used in space
uInt *v) // working area: values in order of bit length
// Given a list of code lengths and a maximum table size, make a set of
// tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
// if the given code set is incomplete (the tables are still built in this
// case), or Z_DATA_ERROR if the input is invalid.
{
uInt a; // counter for codes of length k
uInt c[BMAX + 1]; // bit length count table
uInt f; // i repeats in table every f entries
int g; // maximum code length
int h; // table level
register uInt i; // counter, current code
register uInt j; // counter
register int k; // number of bits in current code
int l; // bits per table (returned in m)
uInt mask; // (1 << w) - 1, to avoid cc -O bug on HP
register uInt *p; // pointer into c[], b[], or v[]
inflate_huft *q; // points to current table
struct inflate_huft_s r; // table entry for structure assignment
inflate_huft *u[BMAX]; // table stack
register int w; // bits before this table == (l * h)
uInt x[BMAX + 1]; // bit offsets, then code stack
uInt *xp; // pointer into x
int y; // number of dummy codes added
uInt z; // number of entries in current table
// Generate counts for each bit length
p = c;
#define C0 *p++ = 0;
#define C2 C0 C0 C0 C0
#define C4 C2 C2 C2 C2
C4;
p; // clear c[]--assume BMAX+1 is 16
p = b;
i = n;
do
{
c[*p++]++; // assume all entries <= BMAX
} while (--i);
if (c[0] == n) // null input--all zero length codes
{
*t = (inflate_huft *)Z_NULL;
*m = 0;
return Z_OK;
}
// Find minimum and maximum length, bound *m by those
l = *m;
for (j = 1; j <= BMAX; j++)
if (c[j])
break;
k = j; // minimum code length
if ((uInt)l < j)
l = j;
for (i = BMAX; i; i--)
if (c[i])
break;
g = i; // maximum code length
if ((uInt)l > i)
l = i;
*m = l;
// Adjust last length count to fill out codes, if needed
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= c[j]) < 0)
return Z_DATA_ERROR;
if ((y -= c[i]) < 0)
return Z_DATA_ERROR;
c[i] += y;
// Generate starting offsets into the value table for each length
x[1] = j = 0;
p = c + 1;
xp = x + 2;
while (--i) // note that i == g from above
{
*xp++ = (j += *p++);
}
// Make a table of values in order of bit lengths
p = b;
i = 0;
do
{
if ((j = *p++) != 0)
v[x[j]++] = i;
} while (++i < n);
n = x[g]; // set n to length of v
// Generate the Huffman codes and for each, make the table entries
x[0] = i = 0; // first Huffman code is zero
p = v; // grab values in bit order
h = -1; // no tables yet--level -1
w = -l; // bits decoded == (l * h)
u[0] = (inflate_huft *)Z_NULL; // just to keep compilers happy
q = (inflate_huft *)Z_NULL; // ditto
z = 0; // ditto
// go through the bit lengths (k already is bits in shortest code)
for (; k <= g; k++)
{
a = c[k];
while (a--)
{
// here i is the Huffman code of length k bits for value *p
// make tables up to required level
while (k > w + l)
{
h++;
w += l; // previous table always l bits
// compute minimum size table less than or equal to l bits
z = g - w;
z = z > (uInt)l ? l : z; // table size upper limit
if ((f = 1 << (j = k - w)) > a + 1) // try a k-w bit table
{
// too few codes for k-w bit table
f -= a + 1; // deduct codes from patterns left
xp = c + k;
if (j < z)
while (++j < z) // try smaller tables up to z bits
{
if ((f <<= 1) <= *++xp)
break; // enough codes to use up j bits
f -= *xp; // else deduct codes from patterns
}
}
z = 1 << j; // table entries for j-bit table
// allocate new table
if (*hn + z > MANY) // (note: doesn‘t matter for fixed)
return Z_DATA_ERROR; // overflow of MANY
u[h] = q = hp + *hn;
*hn += z;
// connect to last table, if there is one
if (h)
{
x[h] = i; // save pattern for backing up
r.bits = (Byte)l; // bits to dump before this table
r.exop = (Byte)j; // bits in this table
j = i >> (w - l);
r.base = (uInt)(q - u[h - 1] - j); // offset to this table
u[h - 1][j] = r; // connect to last table
}
else
*t = q; // first table is returned result
}
// set up table entry in r
r.bits = (Byte)(k - w);
if (p >= v + n)
r.exop = 128 + 64; // out of values--invalid code
else if (*p < s)
{
r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); // 256 is end-of-block
r.base = *p++; // simple code is just the value
}
else
{
r.exop = (Byte)(e[*p - s] + 16 + 64);// non-simple--look up in lists
r.base = d[*p++ - s];
}
// fill code-like entries with r
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
// backwards increment the k-bit code i
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
// backup over finished tables
mask = (1 << w) - 1; // needed on HP, cc -O bug
while ((i & mask) != x[h])
{
h--; // don‘t need to update q
w -= l;
mask = (1 << w) - 1;
}
}
}
// Return Z_BUF_ERROR if we were given an incomplete table
return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
}
int inflate_trees_bits(
uInt *c, // 19 code lengths
uInt *bb, // bits tree desired/actual depth
inflate_huft * *tb, // bits tree result
inflate_huft *hp, // space for trees
z_streamp z) // for messages
{
int r;
uInt hn = 0; // hufts used in space
uInt *v; // work area for huft_build
if ((v = (uInt *)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
return Z_MEM_ERROR;
r = huft_build(c, 19, 19, (uInt *)Z_NULL, (uInt *)Z_NULL,
tb, bb, hp, &hn, v);
if (r == Z_DATA_ERROR)
z->msg = (char *)"oversubscribed dynamic bit lengths tree";
else if (r == Z_BUF_ERROR || *bb == 0)
{
z->msg = (char *)"incomplete dynamic bit lengths tree";
r = Z_DATA_ERROR;
}
ZFREE(z, v);
return r;
}
int inflate_trees_dynamic(
uInt nl, // number of literal/length codes
uInt nd, // number of distance codes
uInt *c, // that many (total) code lengths
uInt *bl, // literal desired/actual bit depth
uInt *bd, // distance desired/actual bit depth
inflate_huft * *tl, // literal/length tree result
inflate_huft * *td, // distance tree result
inflate_huft *hp, // space for trees
z_streamp z) // for messages
{
int r;
uInt hn = 0; // hufts used in space
uInt *v; // work area for huft_build
// allocate work area
if ((v = (uInt *)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
return Z_MEM_ERROR;
// build literal/length tree
r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
if (r != Z_OK || *bl == 0)
{
if (r == Z_DATA_ERROR)
z->msg = (char *)"oversubscribed literal/length tree";
else if (r != Z_MEM_ERROR)
{
z->msg = (char *)"incomplete literal/length tree";
r = Z_DATA_ERROR;
}
ZFREE(z, v);
return r;
}
// build distance tree
r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
if (r != Z_OK || (*bd == 0 && nl > 257))
{
if (r == Z_DATA_ERROR)
z->msg = (char *)"oversubscribed distance tree";
else if (r == Z_BUF_ERROR)
{
z->msg = (char *)"incomplete distance tree";
r = Z_DATA_ERROR;
}
else if (r != Z_MEM_ERROR)
{
z->msg = (char *)"empty distance tree with lengths";
r = Z_DATA_ERROR;
}
ZFREE(z, v);
return r;
}
// done
ZFREE(z, v);
return Z_OK;
}
int inflate_trees_fixed(
uInt *bl, // literal desired/actual bit depth
uInt *bd, // distance desired/actual bit depth
const inflate_huft * * tl, // literal/length tree result
const inflate_huft * *td, // distance tree result
z_streamp ) // for memory allocation
{
*bl = fixed_bl;
*bd = fixed_bd;
*tl = fixed_tl;
*td = fixed_td;
return Z_OK;
}
// inffast.c -- process literals and length/distance pairs fast
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h
//
//struct inflate_codes_state {int dummy;}; // for buggy compilers
// macros for bit input with no checking and for returning unused bytes
#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
#define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
// Called with number of bytes left to write in window at least 258
// (the maximum string length) and number of input bytes available
// at least ten. The ten bytes are six bytes for the longest length/
// distance pair plus four bytes for overloading the bit buffer.
int inflate_fast(
uInt bl, uInt bd,
const inflate_huft *tl,
const inflate_huft *td, // need separate declaration for Borland C++
inflate_blocks_statef *s,
z_streamp z)
{
const inflate_huft *t; // temporary pointer
uInt e; // extra bits or operation
uLong b; // bit buffer
uInt k; // bits in bit buffer
Byte *p; // input data pointer
uInt n; // bytes available there
Byte *q; // output window write pointer
uInt m; // bytes to end of window or read pointer
uInt ml; // mask for literal/length tree
uInt md; // mask for distance tree
uInt c; // bytes to copy
uInt d; // distance back to copy from
Byte *r; // copy source pointer
// load input, output, bit values
LOAD
// initialize masks
ml = inflate_mask[bl];
md = inflate_mask[bd];
// do until not enough input or output space for fast loop
do // assume called with m >= 258 && n >= 10
{
// get literal/length code
GRABBITS(20) // max bits for literal/length code
if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
{
DUMPBITS(t->bits)
LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
"inflate: * literal ‘%c‘\n" :
"inflate: * literal 0x%02x\n", t->base));
*q++ = (Byte)t->base;
m--;
continue;
}
for (;;)
{
DUMPBITS(t->bits)
if (e & 16)
{
// get extra bits for length
e &= 15;
c = t->base + ((uInt)b & inflate_mask[e]);
DUMPBITS(e)
LuTracevv((stderr, "inflate: * length %u\n", c));
// decode distance base of block to copy
GRABBITS(15); // max bits for distance code
e = (t = td + ((uInt)b & md))->exop;
for (;;)
{
DUMPBITS(t->bits)
if (e & 16)
{
// get extra bits to add to distance base
e &= 15;
GRABBITS(e) // get extra bits (up to 13)
d = t->base + ((uInt)b & inflate_mask[e]);
DUMPBITS(e)
LuTracevv((stderr, "inflate: * distance %u\n", d));
// do the copy
m -= c;
r = q - d;
if (r < s->window) // wrap if needed
{
do
{
r += s->end - s->window; // force pointer in window
} while (r < s->window); // covers invalid distances
e = (uInt) (s->end - r);
if (c > e)
{
c -= e; // wrapped copy
do
{
*q++ = *r++;
} while (--e);
r = s->window;
do
{
*q++ = *r++;
} while (--c);
}
else // normal copy
{
*q++ = *r++;
c--;
*q++ = *r++;
c--;
do
{
*q++ = *r++;
} while (--c);
}
}
else /* normal copy */
{
*q++ = *r++;
c--;
*q++ = *r++;
c--;
do
{
*q++ = *r++;
} while (--c);
}
break;
}
else if ((e & 64) == 0)
{
t += t->base;
e = (t += ((uInt)b & inflate_mask[e]))->exop;
}
else
{
z->msg = (char *)"invalid distance code";
UNGRAB
UPDATE
return Z_DATA_ERROR;
}
};
break;
}
if ((e & 64) == 0)
{
t += t->base;
if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
{
DUMPBITS(t->bits)
LuTracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
"inflate: * literal ‘%c‘\n" :
"inflate: * literal 0x%02x\n", t->base));
*q++ = (Byte)t->base;
m--;
break;
}
}
else if (e & 32)
{
LuTracevv((stderr, "inflate: * end of block\n"));
UNGRAB
UPDATE
return Z_STREAM_END;
}
else
{
z->msg = (char *)"invalid literal/length code";
UNGRAB
UPDATE
return Z_DATA_ERROR;
}
};
} while (m >= 258 && n >= 10);
// not enough input or output--restore pointers and return
UNGRAB
UPDATE
return Z_OK;
}
// crc32.c -- compute the CRC-32 of a data stream
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h
// @(#) $Id$
// Table of CRC-32‘s of all single-byte values (made by make_crc_table)
const uLong crc_table[256] =
{
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL
};
const uLong *get_crc_table()
{
return (const uLong *)crc_table;
}
#define CRC_DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8);
#define CRC_DO2(buf) CRC_DO1(buf); CRC_DO1(buf);
#define CRC_DO4(buf) CRC_DO2(buf); CRC_DO2(buf);
#define CRC_DO8(buf) CRC_DO4(buf); CRC_DO4(buf);
uLong ucrc32(uLong crc, const Byte *buf, uInt len)
{
if (buf == Z_NULL) return 0L;
crc = crc ^ 0xffffffffL;
while (len >= 8)
{
CRC_DO8(buf);
len -= 8;
}
if (len) do
{
CRC_DO1(buf);
} while (--len);
return crc ^ 0xffffffffL;
}
// =============================================================
// some decryption routines
#define CRC32(c, b) (crc_table[((int)(c)^(b))&0xff]^((c)>>8))
void Uupdate_keys(unsigned long *keys, char c)
{
keys[0] = CRC32(keys[0], c);
keys[1] += keys[0] & 0xFF;
keys[1] = keys[1] * 134775813L + 1;
keys[2] = CRC32(keys[2], keys[1] >> 24);
}
char Udecrypt_byte(unsigned long *keys)
{
unsigned temp = ((unsigned)keys[2] & 0xffff) | 2;
return (char)(((temp * (temp ^ 1)) >> 8) & 0xff);
}
char zdecode(unsigned long *keys, char c)
{
c ^= Udecrypt_byte(keys);
Uupdate_keys(keys, c);
return c;
}
// adler32.c -- compute the Adler-32 checksum of a data stream
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h
// @(#) $Id$
#define BASE 65521L // largest prime smaller than 65536
#define NMAX 5552
// NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1
#define AD_DO1(buf,i) {s1 += buf[i]; s2 += s1;}
#define AD_DO2(buf,i) AD_DO1(buf,i); AD_DO1(buf,i+1);
#define AD_DO4(buf,i) AD_DO2(buf,i); AD_DO2(buf,i+2);
#define AD_DO8(buf,i) AD_DO4(buf,i); AD_DO4(buf,i+4);
#define AD_DO16(buf) AD_DO8(buf,0); AD_DO8(buf,8);
// =========================================================================
uLong adler32(uLong adler, const Byte *buf, uInt len)
{
unsigned long s1 = adler & 0xffff;
unsigned long s2 = (adler >> 16) & 0xffff;
int k;
if (buf == Z_NULL) return 1L;
while (len > 0)
{
k = len < NMAX ? len : NMAX;
len -= k;
while (k >= 16)
{
AD_DO16(buf);
buf += 16;
k -= 16;
}
if (k != 0) do
{
s1 += *buf++;
s2 += s1;
} while (--k);
s1 %= BASE;
s2 %= BASE;
}
return (s2 << 16) | s1;
}
// zutil.c -- target dependent utility functions for the compression library
// Copyright (C) 1995-1998 Jean-loup Gailly.
// For conditions of distribution and use, see copyright notice in zlib.h
// @(#) $Id$
const char *zlibVersion()
{
return ZLIB_VERSION;
}
// exported to allow conversion of error code to string for compress() and
// uncompress()
const char *zError(int err)
{
return ERR_MSG(err);
}
voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
{
if (opaque) items += size - size; // make compiler happy
return (voidpf)calloc(items, size);
}
void zcfree (voidpf opaque, voidpf ptr)
{
zfree(ptr);
if (opaque) return; // make compiler happy
}
// inflate.c -- zlib interface to inflate modules
// Copyright (C) 1995-1998 Mark Adler
// For conditions of distribution and use, see copyright notice in zlib.h
//struct inflate_blocks_state {int dummy;}; // for buggy compilers
typedef enum
{
IM_METHOD, // waiting for method byte
IM_FLAG, // waiting for flag byte
IM_DICT4, // four dictionary check bytes to go
IM_DICT3, // three dictionary check bytes to go
IM_DICT2, // two dictionary check bytes to go
IM_DICT1, // one dictionary check byte to go
IM_DICT0, // waiting for inflateSetDictionary
IM_BLOCKS, // decompressing blocks
IM_CHECK4, // four check bytes to go
IM_CHECK3, // three check bytes to go
IM_CHECK2, // two check bytes to go
IM_CHECK1, // one check byte to go
IM_DONE, // finished check, done
IM_BAD
} // got an error--stay here
inflate_mode;
// inflate private state
struct internal_state
{
// mode
inflate_mode mode; // current inflate mode
// mode dependent information
union
{
uInt method; // if IM_FLAGS, method byte
struct
{
uLong was; // computed check value
uLong need; // stream check value
} check; // if CHECK, check values to compare
uInt marker; // if IM_BAD, inflateSync‘s marker bytes count
} sub; // submode
// mode independent information
int nowrap; // flag for no wrapper
uInt wbits; // log2(window size) (8..15, defaults to 15)
inflate_blocks_statef
*blocks; // current inflate_blocks state
};
int inflateReset(z_streamp z)
{
if (z == Z_NULL || z->state == Z_NULL)
return Z_STREAM_ERROR;
z->total_in = z->total_out = 0;
z->msg = Z_NULL;
z->state->mode = z->state->nowrap ? IM_BLOCKS : IM_METHOD;
inflate_blocks_reset(z->state->blocks, z, Z_NULL);
LuTracev((stderr, "inflate: reset\n"));
return Z_OK;
}
int inflateEnd(z_streamp z)
{
if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
return Z_STREAM_ERROR;
if (z->state->blocks != Z_NULL)
inflate_blocks_free(z->state->blocks, z);
ZFREE(z, z->state);
z->state = Z_NULL;
LuTracev((stderr, "inflate: end\n"));
return Z_OK;
}
int inflateInit2(z_streamp z)
{
const char *version = ZLIB_VERSION;
int stream_size = sizeof(z_stream);
if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != sizeof(z_stream)) return Z_VERSION_ERROR;
int w = -15; // MAX_WBITS: 32K LZ77 window.
// Warning: reducing MAX_WBITS makes minigzip unable to extract .gz files created by gzip.
// The memory requirements for deflate are (in bytes):
// (1 << (windowBits+2)) + (1 << (memLevel+9))
// that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values)
// plus a few kilobytes for small objects. For example, if you want to reduce
// the default memory requirements from 256K to 128K, compile with
// make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
// Of course this will generally degrade compression (there‘s no free lunch).
//
// The memory requirements for inflate are (in bytes) 1 << windowBits
// that is, 32K for windowBits=15 (default value) plus a few kilobytes
// for small objects.
// initialize state
if (z == Z_NULL) return Z_STREAM_ERROR;
z->msg = Z_NULL;
if (z->zalloc == Z_NULL)
{
z->zalloc = zcalloc;
z->opaque = (voidpf)0;
}
if (z->zfree == Z_NULL) z->zfree = zcfree;
if ((z->state = (struct internal_state *)
ZALLOC(z, 1, sizeof(struct internal_state))) == Z_NULL)
return Z_MEM_ERROR;
z->state->blocks = Z_NULL;
// handle undocumented nowrap option (no zlib header or check)
z->state->nowrap = 0;
if (w < 0)
{
w = - w;
z->state->nowrap = 1;
}
// set window size
if (w < 8 || w > 15)
{
inflateEnd(z);
return Z_STREAM_ERROR;
}
z->state->wbits = (uInt)w;
// create inflate_blocks state
if ((z->state->blocks =
inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
== Z_NULL)
{
inflateEnd(z);
return Z_MEM_ERROR;
}
LuTracev((stderr, "inflate: allocated\n"));
// reset state
inflateReset(z);
return Z_OK;
}
#define IM_NEEDBYTE {if(z->avail_in==0)return r;r=f;}
#define IM_NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
int inflate(z_streamp z, int f)
{
int r;
uInt b;
if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
return Z_STREAM_ERROR;
f = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
r = Z_BUF_ERROR;
for (;;) switch (z->state->mode)
{
case IM_METHOD:
IM_NEEDBYTE
if (((z->state->sub.method = IM_NEXTBYTE) & 0xf) != Z_DEFLATED)
{
z->state->mode = IM_BAD;
z->msg = (char *)"unknown compression method";
z->state->sub.marker = 5; // can‘t try inflateSync
break;
}
if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
{
z->state->mode = IM_BAD;
z->msg = (char *)"invalid window size";
z->state->sub.marker = 5; // can‘t try inflateSync
break;
}
z->state->mode = IM_FLAG;
case IM_FLAG:
IM_NEEDBYTE
b = IM_NEXTBYTE;
if (((z->state->sub.method << 8) + b) % 31)
{
z->state->mode = IM_BAD;
z->msg = (char *)"incorrect header check";
z->state->sub.marker = 5; // can‘t try inflateSync
break;
}
LuTracev((stderr, "inflate: zlib header ok\n"));
if (!(b & PRESET_DICT))
{
z->state->mode = IM_BLOCKS;
break;
}
z->state->mode = IM_DICT4;
case IM_DICT4:
IM_NEEDBYTE
z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24;
z->state->mode = IM_DICT3;
case IM_DICT3:
IM_NEEDBYTE
z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16;
z->state->mode = IM_DICT2;
case IM_DICT2:
IM_NEEDBYTE
z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8;
z->state->mode = IM_DICT1;
case IM_DICT1:
IM_NEEDBYTE;
r;
z->state->sub.check.need += (uLong)IM_NEXTBYTE;
z->adler = z->state->sub.check.need;
z->state->mode = IM_DICT0;
return Z_NEED_DICT;
case IM_DICT0:
z->state->mode = IM_BAD;
z->msg = (char *)"need dictionary";
z->state->sub.marker = 0; // can try inflateSync
return Z_STREAM_ERROR;
case IM_BLOCKS:
r = inflate_blocks(z->state->blocks, z, r);
if (r == Z_DATA_ERROR)
{
z->state->mode = IM_BAD;
z->state->sub.marker = 0; // can try inflateSync
break;
}
if (r == Z_OK)
r = f;
if (r != Z_STREAM_END)
return r;
r = f;
inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
if (z->state->nowrap)
{
z->state->mode = IM_DONE;
break;
}
z->state->mode = IM_CHECK4;
case IM_CHECK4:
IM_NEEDBYTE
z->state->sub.check.need = (uLong)IM_NEXTBYTE << 24;
z->state->mode = IM_CHECK3;
case IM_CHECK3:
IM_NEEDBYTE
z->state->sub.check.need += (uLong)IM_NEXTBYTE << 16;
z->state->mode = IM_CHECK2;
case IM_CHECK2:
IM_NEEDBYTE
z->state->sub.check.need += (uLong)IM_NEXTBYTE << 8;
z->state->mode = IM_CHECK1;
case IM_CHECK1:
IM_NEEDBYTE
z->state->sub.check.need += (uLong)IM_NEXTBYTE;
if (z->state->sub.check.was != z->state->sub.check.need)
{
z->state->mode = IM_BAD;
z->msg = (char *)"incorrect data check";
z->state->sub.marker = 5; // can‘t try inflateSync
break;
}
LuTracev((stderr, "inflate: zlib check ok\n"));
z->state->mode = IM_DONE;
case IM_DONE:
return Z_STREAM_END;
case IM_BAD:
return Z_DATA_ERROR;
default:
return Z_STREAM_ERROR;
}
}
// unzip.c -- IO on .zip files using zlib
// Version 0.15 beta, Mar 19th, 1998,
// Read unzip.h for more info
#define UNZ_BUFSIZE (16384)
#define UNZ_MAXFILENAMEINZIP (256)
#define SIZECENTRALDIRITEM (0x2e)
#define SIZEZIPLOCALHEADER (0x1e)
const char unz_copyright[] = " unzip 0.15 Copyright 1998 Gilles Vollant ";
// unz_file_info_interntal contain internal info about a file in zipfile
typedef struct unz_file_info_internal_s
{
uLong offset_curfile;// relative offset of local header 4 bytes
} unz_file_info_internal;
typedef struct
{
bool is_handle; // either a handle or memory
bool canseek;
// for handles:
HANDLE h;
bool herr;
unsigned long initial_offset;
bool mustclosehandle;
// for memory:
void *buf;
unsigned int len, pos; // if it‘s a memory block
} LUFILE;
LUFILE *lufopen(void *z, unsigned int len, DWORD flags, ZRESULT *err)
{
if (flags != ZIP_HANDLE && flags != ZIP_FILENAME && flags != ZIP_MEMORY)
{
*err = ZR_ARGS;
return NULL;
}
//
HANDLE h = 0;
bool canseek = false;
*err = ZR_OK;
bool mustclosehandle = false;
if (flags == ZIP_HANDLE || flags == ZIP_FILENAME)
{
if (flags == ZIP_HANDLE)
{
HANDLE hf = z;
h = hf;
mustclosehandle = false;
#ifdef DuplicateHandle
BOOL res = DuplicateHandle(GetCurrentProcess(), hf, GetCurrentProcess(), &h, 0, FALSE, DUPLICATE_SAME_ACCESS);
if (!res) mustclosehandle = true;
#endif
}
else
{
h = CreateFile((const TCHAR *)z, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (h == INVALID_HANDLE_VALUE)
{
*err = ZR_NOFILE;
return NULL;
}
mustclosehandle = true;
}
// test if we can seek on it. We can‘t use GetFileType(h)==FILE_TYPE_DISK since it‘s not on CE.
DWORD res = SetFilePointer(h, 0, 0, FILE_CURRENT);
canseek = (res != 0xFFFFFFFF);
}
LUFILE *lf = new LUFILE;
if (flags == ZIP_HANDLE || flags == ZIP_FILENAME)
{
lf->is_handle = true;
lf->mustclosehandle = mustclosehandle;
lf->canseek = canseek;
lf->h = h;
lf->herr = false;
lf->initial_offset = 0;
if (canseek) lf->initial_offset = SetFilePointer(h, 0, NULL, FILE_CURRENT);
}
else
{
lf->is_handle = false;
lf->canseek = true;
lf->mustclosehandle = false;
lf->buf = z;
lf->len = len;
lf->pos = 0;
lf->initial_offset = 0;
}
*err = ZR_OK;
return lf;
}
int lufclose(LUFILE *stream)
{
if (stream == NULL) return EOF;
if (stream->mustclosehandle) CloseHandle(stream->h);
delete stream;
return 0;
}
int luferror(LUFILE *stream)
{
if (stream->is_handle && stream->herr) return 1;
else return 0;
}
long int luftell(LUFILE *stream)
{
if (stream->is_handle && stream->canseek) return SetFilePointer(stream->h, 0, NULL, FILE_CURRENT) - stream->initial_offset;
else if (stream->is_handle) return 0;
else return stream->pos;
}
int lufseek(LUFILE *stream, long offset, int whence)
{
if (stream->is_handle && stream->canseek)
{
if (whence == SEEK_SET) SetFilePointer(stream->h, stream->initial_offset + offset, 0, FILE_BEGIN);
else if (whence == SEEK_CUR) SetFilePointer(stream->h, offset, NULL, FILE_CURRENT);
else if (whence == SEEK_END) SetFilePointer(stream->h, offset, NULL, FILE_END);
else return 19; // EINVAL
return 0;
}
else if (stream->is_handle) return 29; // ESPIPE
else
{
if (whence == SEEK_SET) stream->pos = offset;
else if (whence == SEEK_CUR) stream->pos += offset;
else if (whence == SEEK_END) stream->pos = stream->len + offset;
return 0;
}
}
size_t lufread(void *ptr, size_t size, size_t n, LUFILE *stream)
{
unsigned int toread = (unsigned int)(size * n);
if (stream->is_handle)
{
DWORD red;
BOOL res = ReadFile(stream->h, ptr, toread, &red, NULL);
if (!res) stream->herr = true;
return red / size;
}
if (stream->pos + toread > stream->len) toread = stream->len - stream->pos;
memcpy(ptr, (char *)stream->buf + stream->pos, toread);
DWORD red = toread;
stream->pos += red;
return red / size;
}
// file_in_zip_read_info_s contain internal information about a file in zipfile,
// when reading and decompress it
typedef struct
{
char *read_buffer; // internal buffer for compressed data
z_stream stream; // zLib stream structure for inflate
uLong pos_in_zipfile; // position in byte on the zipfile, for fseek
uLong stream_initialised; // flag set if stream structure is initialised
uLong offset_local_extrafield;// offset of the local extra field
uInt size_local_extrafield;// size of the local extra field
uLong pos_local_extrafield; // position in the local extra field in read
uLong crc32; // crc32 of all data uncompressed
uLong crc32_wait; // crc32 we must obtain after decompress all
uLong rest_read_compressed; // number of byte to be decompressed
uLong rest_read_uncompressed;//number of byte to be obtained after decomp
LUFILE *file; // io structore of the zipfile
uLong compression_method; // compression method (0==store)
uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx)
bool encrypted; // is it encrypted?
unsigned long keys[3]; // decryption keys, initialized by unzOpenCurrentFile
int encheadleft; // the first call(s) to unzReadCurrentFile will read this many encryption-header bytes first
char crcenctest; // if encrypted, we‘ll check the encryption buffer against this
} file_in_zip_read_info_s;
// unz_s contain internal information about the zipfile
typedef struct
{
LUFILE *file; // io structore of the zipfile
unz_global_info gi; // public global information
uLong byte_before_the_zipfile;// byte before the zipfile, (>0 for sfx)
uLong num_file; // number of the current file in the zipfile
uLong pos_in_central_dir; // pos of the current file in the central dir
uLong current_file_ok; // flag about the usability of the current file
uLong central_pos; // position of the beginning of the central dir
uLong size_central_dir; // size of the central directory
uLong offset_central_dir; // offset of start of central directory with respect to the starting disk number
unz_file_info cur_file_info; // public info about the current file in zip
unz_file_info_internal cur_file_info_internal; // private info about it
file_in_zip_read_info_s *pfile_in_zip_read; // structure about the current file if we are decompressing it
} unz_s, *unzFile;
int unzStringFileNameCompare (const char *fileName1, const char *fileName2, int iCaseSensitivity);
// Compare two filename (fileName1,fileName2).
z_off_t unztell (unzFile file);
// Give the current position in uncompressed data
int unzeof (unzFile file);
// return 1 if the end of file was reached, 0 elsewhere
int unzGetLocalExtrafield (unzFile file, voidp buf, unsigned len);
// Read extra field from the current file (opened by unzOpenCurrentFile)
// This is the local-header version of the extra field (sometimes, there is
// more info in the local-header version than in the central-header)
//
// if buf==NULL, it return the size of the local extra field
//
// if buf!=NULL, len is the size of the buffer, the extra header is copied in
// buf.
// the return value is the number of bytes copied in buf, or (if <0)
// the error code
// ===========================================================================
// Read a byte from a gz_stream; update next_in and avail_in. Return EOF
// for end of file.
// IN assertion: the stream s has been sucessfully opened for reading.
int unzlocal_getByte(LUFILE *fin, int *pi)
{
unsigned char c;
int err = (int)lufread(&c, 1, 1, fin);
if (err == 1)
{
*pi = (int)c;
return UNZ_OK;
}
else
{
if (luferror(fin)) return UNZ_ERRNO;
else return UNZ_EOF;
}
}
// ===========================================================================
// Reads a long in LSB order from the given gz_stream. Sets
int unzlocal_getShort (LUFILE *fin, uLong *pX)
{
uLong x ;
int i;
int err;
err = unzlocal_getByte(fin, &i);
x = (uLong)i;
if (err == UNZ_OK)
err = unzlocal_getByte(fin, &i);
x += ((uLong)i) << 8;
if (err == UNZ_OK)
*pX = x;
else
*pX = 0;
return err;
}
int unzlocal_getLong (LUFILE *fin, uLong *pX)
{
uLong x ;
int i;
int err;
err = unzlocal_getByte(fin, &i);
x = (uLong)i;
if (err == UNZ_OK)
err = unzlocal_getByte(fin, &i);
x += ((uLong)i) << 8;
if (err == UNZ_OK)
err = unzlocal_getByte(fin, &i);
x += ((uLong)i) << 16;
if (err == UNZ_OK)
err = unzlocal_getByte(fin, &i);
x += ((uLong)i) << 24;
if (err == UNZ_OK)
*pX = x;
else
*pX = 0;
return err;
}
// My own strcmpi / strcasecmp
int strcmpcasenosensitive_internal (const char *fileName1, const char *fileName2)
{
for (;;)
{
char c1 = *(fileName1++);
char c2 = *(fileName2++);
if ((c1 >= ‘a‘) && (c1 <= ‘z‘))
c1 -= (char)0x20;
if ((c2 >= ‘a‘) && (c2 <= ‘z‘))
c2 -= (char)0x20;
if (c1 == ‘\0‘)
return ((c2 == ‘\0‘) ? 0 : -1);
if (c2 == ‘\0‘)
return 1;
if (c1 < c2)
return -1;
if (c1 > c2)
return 1;
}
}
//
// Compare two filename (fileName1,fileName2).
// If iCaseSenisivity = 1, comparision is case sensitivity (like strcmp)
// If iCaseSenisivity = 2, comparision is not case sensitivity (like strcmpi or strcasecmp)
//
int unzStringFileNameCompare (const char *fileName1, const char *fileName2, int iCaseSensitivity)
{
if (iCaseSensitivity == 1) return strcmp(fileName1, fileName2);
else return strcmpcasenosensitive_internal(fileName1, fileName2);
}
#define BUFREADCOMMENT (0x400)
// Locate the Central directory of a zipfile (at the end, just before
// the global comment). Lu bugfix 2005.07.26 - returns 0xFFFFFFFF if not found,
// rather than 0, since 0 is a valid central-dir-location for an empty zipfile.
uLong unzlocal_SearchCentralDir(LUFILE *fin)
{
if (lufseek(fin, 0, SEEK_END) != 0) return 0xFFFFFFFF;
uLong uSizeFile = luftell(fin);
uLong uMaxBack = 0xffff; // maximum size of global comment
if (uMaxBack > uSizeFile) uMaxBack = uSizeFile;
unsigned char *buf = (unsigned char *)zmalloc(BUFREADCOMMENT + 4);
if (buf == NULL) return 0xFFFFFFFF;
uLong uPosFound = 0xFFFFFFFF;
uLong uBackRead = 4;
while (uBackRead < uMaxBack)
{
uLong uReadSize, uReadPos ;
int i;
if (uBackRead + BUFREADCOMMENT > uMaxBack) uBackRead = uMaxBack;
else uBackRead += BUFREADCOMMENT;
uReadPos = uSizeFile - uBackRead ;
uReadSize = ((BUFREADCOMMENT + 4) < (uSizeFile - uReadPos)) ? (BUFREADCOMMENT + 4) : (uSizeFile - uReadPos);
if (lufseek(fin, uReadPos, SEEK_SET) != 0) break;
if (lufread(buf, (uInt)uReadSize, 1, fin) != 1) break;
for (i = (int)uReadSize - 3; (i--) >= 0;)
{
if (((*(buf + i)) == 0x50) && ((*(buf + i + 1)) == 0x4b) && ((*(buf + i + 2)) == 0x05) && ((*(buf + i + 3)) == 0x06))
{
uPosFound = uReadPos + i;
break;
}
}
if (uPosFound != 0) break;
}
if (buf) zfree(buf);
return uPosFound;
}
int unzGoToFirstFile (unzFile file);
int unzCloseCurrentFile (unzFile file);
// Open a Zip file.
// If the zipfile cannot be opened (file don‘t exist or in not valid), return NULL.
// Otherwise, the return value is a unzFile Handle, usable with other unzip functions
unzFile unzOpenInternal(LUFILE *fin)
{
if (fin == NULL) return NULL;
if (unz_copyright[0] != ‘ ‘)
{
lufclose(fin);
return NULL;
}
int err = UNZ_OK;
unz_s us;
uLong central_pos, uL;
central_pos = unzlocal_SearchCentralDir(fin);
if (central_pos == 0xFFFFFFFF) err = UNZ_ERRNO;
if (lufseek(fin, central_pos, SEEK_SET) != 0) err = UNZ_ERRNO;
// the signature, already checked
if (unzlocal_getLong(fin, &uL) != UNZ_OK) err = UNZ_ERRNO;
// number of this disk
uLong number_disk; // number of the current dist, used for spanning ZIP, unsupported, always 0
if (unzlocal_getShort(fin, &number_disk) != UNZ_OK) err = UNZ_ERRNO;
// number of the disk with the start of the central directory
uLong number_disk_with_CD; // number the the disk with central dir, used for spaning ZIP, unsupported, always 0
if (unzlocal_getShort(fin, &number_disk_with_CD) != UNZ_OK) err = UNZ_ERRNO;
// total number of entries in the central dir on this disk
if (unzlocal_getShort(fin, &us.gi.number_entry) != UNZ_OK) err = UNZ_ERRNO;
// total number of entries in the central dir
uLong number_entry_CD; // total number of entries in the central dir (same than number_entry on nospan)
if (unzlocal_getShort(fin, &number_entry_CD) != UNZ_OK) err = UNZ_ERRNO;
if ((number_entry_CD != us.gi.number_entry) || (number_disk_with_CD != 0) || (number_disk != 0)) err = UNZ_BADZIPFILE;
// size of the central directory
if (unzlocal_getLong(fin, &us.size_central_dir) != UNZ_OK) err = UNZ_ERRNO;
// offset of start of central directory with respect to the starting disk number
if (unzlocal_getLong(fin, &us.offset_central_dir) != UNZ_OK) err = UNZ_ERRNO;
// zipfile comment length
if (unzlocal_getShort(fin, &us.gi.size_comment) != UNZ_OK) err = UNZ_ERRNO;
if ((central_pos + fin->initial_offset < us.offset_central_dir + us.size_central_dir) && (err == UNZ_OK)) err = UNZ_BADZIPFILE;
if (err != UNZ_OK)
{
lufclose(fin);
return NULL;
}
us.file = fin;
us.byte_before_the_zipfile = central_pos + fin->initial_offset - (us.offset_central_dir + us.size_central_dir);
us.central_pos = central_pos;
us.pfile_in_zip_read = NULL;
fin->initial_offset = 0; // since the zipfile itself is expected to handle this
unz_s *s = (unz_s *)zmalloc(sizeof(unz_s));
*s = us;
unzGoToFirstFile((unzFile)s);
return (unzFile)s;
}
// Close a ZipFile opened with unzipOpen.
// If there is files inside the .Zip opened with unzipOpenCurrentFile (see later),
// these files MUST be closed with unzipCloseCurrentFile before call unzipClose.
// return UNZ_OK if there is no problem.
int unzClose (unzFile file)
{
unz_s *s;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
if (s->pfile_in_zip_read != NULL)
unzCloseCurrentFile(file);
lufclose(s->file);
if (s) zfree(s); // unused s=0;
return UNZ_OK;
}
// Write info about the ZipFile in the *pglobal_info structure.
// No preparation of the structure is needed
// return UNZ_OK if there is no problem.
int unzGetGlobalInfo (unzFile file, unz_global_info *pglobal_info)
{
unz_s *s;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
*pglobal_info = s->gi;
return UNZ_OK;
}
// Translate date/time from Dos format to tm_unz (readable more easilty)
void unzlocal_DosDateToTmuDate (uLong ulDosDate, tm_unz *ptm)
{
uLong uDate;
uDate = (uLong)(ulDosDate >> 16);
ptm->tm_mday = (uInt)(uDate & 0x1f) ;
ptm->tm_mon = (uInt)((((uDate) & 0x1E0) / 0x20) - 1) ;
ptm->tm_year = (uInt)(((uDate & 0x0FE00) / 0x0200) + 1980) ;
ptm->tm_hour = (uInt) ((ulDosDate & 0xF800) / 0x800);
ptm->tm_min = (uInt) ((ulDosDate & 0x7E0) / 0x20) ;
ptm->tm_sec = (uInt) (2 * (ulDosDate & 0x1f)) ;
}
// Get Info about the current file in the zipfile, with internal only info
int unzlocal_GetCurrentFileInfoInternal (unzFile file,
unz_file_info *pfile_info,
unz_file_info_internal
*pfile_info_internal,
char *szFileName,
uLong fileNameBufferSize,
void *extraField,
uLong extraFieldBufferSize,
char *szComment,
uLong commentBufferSize);
int unzlocal_GetCurrentFileInfoInternal (unzFile file, unz_file_info *pfile_info,
unz_file_info_internal *pfile_info_internal, char *szFileName,
uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize,
char *szComment, uLong commentBufferSize)
{
unz_s *s;
unz_file_info file_info;
unz_file_info_internal file_info_internal;
int err = UNZ_OK;
uLong uMagic;
long lSeek = 0;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
if (lufseek(s->file, s->pos_in_central_dir + s->byte_before_the_zipfile, SEEK_SET) != 0)
err = UNZ_ERRNO;
// we check the magic
if (err == UNZ_OK)
if (unzlocal_getLong(s->file, &uMagic) != UNZ_OK)
err = UNZ_ERRNO;
else if (uMagic != 0x02014b50)
err = UNZ_BADZIPFILE;
if (unzlocal_getShort(s->file, &file_info.version) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &file_info.version_needed) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &file_info.flag) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &file_info.compression_method) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getLong(s->file, &file_info.dosDate) != UNZ_OK)
err = UNZ_ERRNO;
unzlocal_DosDateToTmuDate(file_info.dosDate, &file_info.tmu_date);
if (unzlocal_getLong(s->file, &file_info.crc) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getLong(s->file, &file_info.compressed_size) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getLong(s->file, &file_info.uncompressed_size) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &file_info.size_filename) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &file_info.size_file_extra) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &file_info.size_file_comment) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &file_info.disk_num_start) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &file_info.internal_fa) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getLong(s->file, &file_info.external_fa) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getLong(s->file, &file_info_internal.offset_curfile) != UNZ_OK)
err = UNZ_ERRNO;
lSeek += file_info.size_filename;
if ((err == UNZ_OK) && (szFileName != NULL))
{
uLong uSizeRead ;
if (file_info.size_filename < fileNameBufferSize)
{
*(szFileName + file_info.size_filename) = ‘\0‘;
uSizeRead = file_info.size_filename;
}
else
uSizeRead = fileNameBufferSize;
if ((file_info.size_filename > 0) && (fileNameBufferSize > 0))
if (lufread(szFileName, (uInt)uSizeRead, 1, s->file) != 1)
err = UNZ_ERRNO;
lSeek -= uSizeRead;
}
if ((err == UNZ_OK) && (extraField != NULL))
{
uLong uSizeRead ;
if (file_info.size_file_extra < extraFieldBufferSize)
uSizeRead = file_info.size_file_extra;
else
uSizeRead = extraFieldBufferSize;
if (lSeek != 0)
if (lufseek(s->file, lSeek, SEEK_CUR) == 0)
lSeek = 0;
else
err = UNZ_ERRNO;
if ((file_info.size_file_extra > 0) && (extraFieldBufferSize > 0))
if (lufread(extraField, (uInt)uSizeRead, 1, s->file) != 1)
err = UNZ_ERRNO;
lSeek += file_info.size_file_extra - uSizeRead;
}
else
lSeek += file_info.size_file_extra;
if ((err == UNZ_OK) && (szComment != NULL))
{
uLong uSizeRead ;
if (file_info.size_file_comment < commentBufferSize)
{
*(szComment + file_info.size_file_comment) = ‘\0‘;
uSizeRead = file_info.size_file_comment;
}
else
uSizeRead = commentBufferSize;
if (lSeek != 0)
if (lufseek(s->file, lSeek, SEEK_CUR) == 0)
{} // unused lSeek=0;
else
err = UNZ_ERRNO;
if ((file_info.size_file_comment > 0) && (commentBufferSize > 0))
if (lufread(szComment, (uInt)uSizeRead, 1, s->file) != 1)
err = UNZ_ERRNO;
//unused lSeek+=file_info.size_file_comment - uSizeRead;
}
else {} //unused lSeek+=file_info.size_file_comment;
if ((err == UNZ_OK) && (pfile_info != NULL))
*pfile_info = file_info;
if ((err == UNZ_OK) && (pfile_info_internal != NULL))
*pfile_info_internal = file_info_internal;
return err;
}
// Write info about the ZipFile in the *pglobal_info structure.
// No preparation of the structure is needed
// return UNZ_OK if there is no problem.
int unzGetCurrentFileInfo (unzFile file, unz_file_info *pfile_info,
char *szFileName, uLong fileNameBufferSize, void *extraField, uLong extraFieldBufferSize,
char *szComment, uLong commentBufferSize)
{
return unzlocal_GetCurrentFileInfoInternal(file, pfile_info, NULL, szFileName, fileNameBufferSize,
extraField, extraFieldBufferSize, szComment, commentBufferSize);
}
// Set the current file of the zipfile to the first file.
// return UNZ_OK if there is no problem
int unzGoToFirstFile (unzFile file)
{
int err;
unz_s *s;
if (file == NULL) return UNZ_PARAMERROR;
s = (unz_s *)file;
s->pos_in_central_dir = s->offset_central_dir;
s->num_file = 0;
err = unzlocal_GetCurrentFileInfoInternal(file, &s->cur_file_info,
&s->cur_file_info_internal,
NULL, 0, NULL, 0, NULL, 0);
s->current_file_ok = (err == UNZ_OK);
return err;
}
// Set the current file of the zipfile to the next file.
// return UNZ_OK if there is no problem
// return UNZ_END_OF_LIST_OF_FILE if the actual file was the latest.
int unzGoToNextFile (unzFile file)
{
unz_s *s;
int err;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
if (!s->current_file_ok)
return UNZ_END_OF_LIST_OF_FILE;
if (s->num_file + 1 == s->gi.number_entry)
return UNZ_END_OF_LIST_OF_FILE;
s->pos_in_central_dir += SIZECENTRALDIRITEM + s->cur_file_info.size_filename +
s->cur_file_info.size_file_extra + s->cur_file_info.size_file_comment ;
s->num_file++;
err = unzlocal_GetCurrentFileInfoInternal(file, &s->cur_file_info,
&s->cur_file_info_internal,
NULL, 0, NULL, 0, NULL, 0);
s->current_file_ok = (err == UNZ_OK);
return err;
}
// Try locate the file szFileName in the zipfile.
// For the iCaseSensitivity signification, see unzStringFileNameCompare
// return value :
// UNZ_OK if the file is found. It becomes the current file.
// UNZ_END_OF_LIST_OF_FILE if the file is not found
int unzLocateFile (unzFile file, const char *szFileName, int iCaseSensitivity)
{
unz_s *s;
int err;
uLong num_fileSaved;
uLong pos_in_central_dirSaved;
if (file == NULL)
return UNZ_PARAMERROR;
if (strlen(szFileName) >= UNZ_MAXFILENAMEINZIP)
return UNZ_PARAMERROR;
s = (unz_s *)file;
if (!s->current_file_ok)
return UNZ_END_OF_LIST_OF_FILE;
num_fileSaved = s->num_file;
pos_in_central_dirSaved = s->pos_in_central_dir;
err = unzGoToFirstFile(file);
while (err == UNZ_OK)
{
char szCurrentFileName[UNZ_MAXFILENAMEINZIP + 1];
unzGetCurrentFileInfo(file, NULL,
szCurrentFileName, sizeof(szCurrentFileName) - 1,
NULL, 0, NULL, 0);
if (unzStringFileNameCompare(szCurrentFileName, szFileName, iCaseSensitivity) == 0)
return UNZ_OK;
err = unzGoToNextFile(file);
}
s->num_file = num_fileSaved ;
s->pos_in_central_dir = pos_in_central_dirSaved ;
return err;
}
// Read the local header of the current zipfile
// Check the coherency of the local header and info in the end of central
// directory about this file
// store in *piSizeVar the size of extra info in local header
// (filename and size of extra field data)
int unzlocal_CheckCurrentFileCoherencyHeader (unz_s *s, uInt *piSizeVar,
uLong *poffset_local_extrafield, uInt *psize_local_extrafield)
{
uLong uMagic, uData, uFlags;
uLong size_filename;
uLong size_extra_field;
int err = UNZ_OK;
*piSizeVar = 0;
*poffset_local_extrafield = 0;
*psize_local_extrafield = 0;
if (lufseek(s->file, s->cur_file_info_internal.offset_curfile + s->byte_before_the_zipfile, SEEK_SET) != 0)
return UNZ_ERRNO;
if (err == UNZ_OK)
if (unzlocal_getLong(s->file, &uMagic) != UNZ_OK)
err = UNZ_ERRNO;
else if (uMagic != 0x04034b50)
err = UNZ_BADZIPFILE;
if (unzlocal_getShort(s->file, &uData) != UNZ_OK)
err = UNZ_ERRNO;
// else if ((err==UNZ_OK) && (uData!=s->cur_file_info.wVersion))
// err=UNZ_BADZIPFILE;
if (unzlocal_getShort(s->file, &uFlags) != UNZ_OK)
err = UNZ_ERRNO;
if (unzlocal_getShort(s->file, &uData) != UNZ_OK)
err = UNZ_ERRNO;
else if ((err == UNZ_OK) && (uData != s->cur_file_info.compression_method))
err = UNZ_BADZIPFILE;
if ((err == UNZ_OK) && (s->cur_file_info.compression_method != 0) &&
(s->cur_file_info.compression_method != Z_DEFLATED))
err = UNZ_BADZIPFILE;
if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // date/time
err = UNZ_ERRNO;
if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // crc
err = UNZ_ERRNO;
else if ((err == UNZ_OK) && (uData != s->cur_file_info.crc) &&
((uFlags & 8) == 0))
err = UNZ_BADZIPFILE;
if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // size compr
err = UNZ_ERRNO;
else if ((err == UNZ_OK) && (uData != s->cur_file_info.compressed_size) &&
((uFlags & 8) == 0))
err = UNZ_BADZIPFILE;
if (unzlocal_getLong(s->file, &uData) != UNZ_OK) // size uncompr
err = UNZ_ERRNO;
else if ((err == UNZ_OK) && (uData != s->cur_file_info.uncompressed_size) &&
((uFlags & 8) == 0))
err = UNZ_BADZIPFILE;
if (unzlocal_getShort(s->file, &size_filename) != UNZ_OK)
err = UNZ_ERRNO;
else if ((err == UNZ_OK) && (size_filename != s->cur_file_info.size_filename))
err = UNZ_BADZIPFILE;
*piSizeVar += (uInt)size_filename;
if (unzlocal_getShort(s->file, &size_extra_field) != UNZ_OK)
err = UNZ_ERRNO;
*poffset_local_extrafield = s->cur_file_info_internal.offset_curfile +
SIZEZIPLOCALHEADER + size_filename;
*psize_local_extrafield = (uInt)size_extra_field;
*piSizeVar += (uInt)size_extra_field;
return err;
}
// Open for reading data the current file in the zipfile.
// If there is no error and the file is opened, the return value is UNZ_OK.
int unzOpenCurrentFile (unzFile file, const char *password)
{
int err;
int Store;
uInt iSizeVar;
unz_s *s;
file_in_zip_read_info_s *pfile_in_zip_read_info;
uLong offset_local_extrafield; // offset of the local extra field
uInt size_local_extrafield; // size of the local extra field
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
if (!s->current_file_ok)
return UNZ_PARAMERROR;
if (s->pfile_in_zip_read != NULL)
unzCloseCurrentFile(file);
if (unzlocal_CheckCurrentFileCoherencyHeader(s, &iSizeVar,
&offset_local_extrafield, &size_local_extrafield) != UNZ_OK)
return UNZ_BADZIPFILE;
pfile_in_zip_read_info = (file_in_zip_read_info_s *)zmalloc(sizeof(file_in_zip_read_info_s));
if (pfile_in_zip_read_info == NULL)
return UNZ_INTERNALERROR;
pfile_in_zip_read_info->read_buffer = (char *)zmalloc(UNZ_BUFSIZE);
pfile_in_zip_read_info->offset_local_extrafield = offset_local_extrafield;
pfile_in_zip_read_info->size_local_extrafield = size_local_extrafield;
pfile_in_zip_read_info->pos_local_extrafield = 0;
if (pfile_in_zip_read_info->read_buffer == NULL)
{
if (pfile_in_zip_read_info != 0) zfree(pfile_in_zip_read_info); //unused pfile_in_zip_read_info=0;
return UNZ_INTERNALERROR;
}
pfile_in_zip_read_info->stream_initialised = 0;
if ((s->cur_file_info.compression_method != 0) && (s->cur_file_info.compression_method != Z_DEFLATED))
{
// unused err=UNZ_BADZIPFILE;
}
Store = s->cur_file_info.compression_method == 0;
pfile_in_zip_read_info->crc32_wait = s->cur_file_info.crc;
pfile_in_zip_read_info->crc32 = 0;
pfile_in_zip_read_info->compression_method = s->cur_file_info.compression_method;
pfile_in_zip_read_info->file = s->file;
pfile_in_zip_read_info->byte_before_the_zipfile = s->byte_before_the_zipfile;
pfile_in_zip_read_info->stream.total_out = 0;
if (!Store)
{
pfile_in_zip_read_info->stream.zalloc = (alloc_func)0;
pfile_in_zip_read_info->stream.zfree = (free_func)0;
pfile_in_zip_read_info->stream.opaque = (voidpf)0;
err = inflateInit2(&pfile_in_zip_read_info->stream);
if (err == Z_OK)
pfile_in_zip_read_info->stream_initialised = 1;
// windowBits is passed < 0 to tell that there is no zlib header.
// Note that in this case inflate *requires* an extra "dummy" byte
// after the compressed stream in order to complete decompression and
// return Z_STREAM_END.
// In unzip, i don‘t wait absolutely Z_STREAM_END because I known the
// size of both compressed and uncompressed data
}
pfile_in_zip_read_info->rest_read_compressed = s->cur_file_info.compressed_size ;
pfile_in_zip_read_info->rest_read_uncompressed = s->cur_file_info.uncompressed_size ;
pfile_in_zip_read_info->encrypted = (s->cur_file_info.flag & 1) != 0;
bool extlochead = (s->cur_file_info.flag & 8) != 0;
if (extlochead) pfile_in_zip_read_info->crcenctest = (char)((s->cur_file_info.dosDate >> 8) & 0xff);
else pfile_in_zip_read_info->crcenctest = (char)(s->cur_file_info.crc >> 24);
pfile_in_zip_read_info->encheadleft = (pfile_in_zip_read_info->encrypted ? 12 : 0);
pfile_in_zip_read_info->keys[0] = 305419896L;
pfile_in_zip_read_info->keys[1] = 591751049L;
pfile_in_zip_read_info->keys[2] = 878082192L;
for (const char *cp = password; cp != 0 && *cp != 0; cp++) Uupdate_keys(pfile_in_zip_read_info->keys, *cp);
pfile_in_zip_read_info->pos_in_zipfile =
s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER +
iSizeVar;
pfile_in_zip_read_info->stream.avail_in = (uInt)0;
s->pfile_in_zip_read = pfile_in_zip_read_info;
return UNZ_OK;
}
// Read bytes from the current file.
// buf contain buffer where data must be copied
// len the size of buf.
// return the number of byte copied if somes bytes are copied (and also sets *reached_eof)
// return 0 if the end of file was reached. (and also sets *reached_eof).
// return <0 with error code if there is an error. (in which case *reached_eof is meaningless)
// (UNZ_ERRNO for IO error, or zLib error for uncompress error)
int unzReadCurrentFile (unzFile file, voidp buf, unsigned len, bool *reached_eof)
{
int err = UNZ_OK;
uInt iRead = 0;
if (reached_eof != 0) *reached_eof = false;
unz_s *s = (unz_s *)file;
if (s == NULL) return UNZ_PARAMERROR;
file_in_zip_read_info_s *pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL) return UNZ_PARAMERROR;
if ((pfile_in_zip_read_info->read_buffer == NULL)) return UNZ_END_OF_LIST_OF_FILE;
if (len == 0) return 0;
pfile_in_zip_read_info->stream.next_out = (Byte *)buf;
pfile_in_zip_read_info->stream.avail_out = (uInt)len;
if (len > pfile_in_zip_read_info->rest_read_uncompressed)
{
pfile_in_zip_read_info->stream.avail_out = (uInt)pfile_in_zip_read_info->rest_read_uncompressed;
}
while (pfile_in_zip_read_info->stream.avail_out > 0)
{
if ((pfile_in_zip_read_info->stream.avail_in == 0) && (pfile_in_zip_read_info->rest_read_compressed > 0))
{
uInt uReadThis = UNZ_BUFSIZE;
if (pfile_in_zip_read_info->rest_read_compressed < uReadThis) uReadThis = (uInt)pfile_in_zip_read_info->rest_read_compressed;
if (uReadThis == 0)
{
if (reached_eof != 0) *reached_eof = true;
return UNZ_EOF;
}
if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->pos_in_zipfile + pfile_in_zip_read_info->byte_before_the_zipfile, SEEK_SET) != 0) return UNZ_ERRNO;
if (lufread(pfile_in_zip_read_info->read_buffer, uReadThis, 1, pfile_in_zip_read_info->file) != 1) return UNZ_ERRNO;
pfile_in_zip_read_info->pos_in_zipfile += uReadThis;
pfile_in_zip_read_info->rest_read_compressed -= uReadThis;
pfile_in_zip_read_info->stream.next_in = (Byte *)pfile_in_zip_read_info->read_buffer;
pfile_in_zip_read_info->stream.avail_in = (uInt)uReadThis;
//
if (pfile_in_zip_read_info->encrypted)
{
char *buf = (char *)pfile_in_zip_read_info->stream.next_in;
for (unsigned int i = 0; i < uReadThis; i++) buf[i] = zdecode(pfile_in_zip_read_info->keys, buf[i]);
}
}
unsigned int uDoEncHead = pfile_in_zip_read_info->encheadleft;
if (uDoEncHead > pfile_in_zip_read_info->stream.avail_in) uDoEncHead = pfile_in_zip_read_info->stream.avail_in;
if (uDoEncHead > 0)
{
char bufcrc = pfile_in_zip_read_info->stream.next_in[uDoEncHead - 1];
pfile_in_zip_read_info->rest_read_uncompressed -= uDoEncHead;
pfile_in_zip_read_info->stream.avail_in -= uDoEncHead;
pfile_in_zip_read_info->stream.next_in += uDoEncHead;
pfile_in_zip_read_info->encheadleft -= uDoEncHead;
if (pfile_in_zip_read_info->encheadleft == 0)
{
if (bufcrc != pfile_in_zip_read_info->crcenctest) return UNZ_PASSWORD;
}
}
if (pfile_in_zip_read_info->compression_method == 0)
{
uInt uDoCopy, i ;
if (pfile_in_zip_read_info->stream.avail_out < pfile_in_zip_read_info->stream.avail_in)
{
uDoCopy = pfile_in_zip_read_info->stream.avail_out ;
}
else
{
uDoCopy = pfile_in_zip_read_info->stream.avail_in ;
}
for (i = 0; i < uDoCopy; i++) *(pfile_in_zip_read_info->stream.next_out + i) = *(pfile_in_zip_read_info->stream.next_in + i);
pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32, pfile_in_zip_read_info->stream.next_out, uDoCopy);
pfile_in_zip_read_info->rest_read_uncompressed -= uDoCopy;
pfile_in_zip_read_info->stream.avail_in -= uDoCopy;
pfile_in_zip_read_info->stream.avail_out -= uDoCopy;
pfile_in_zip_read_info->stream.next_out += uDoCopy;
pfile_in_zip_read_info->stream.next_in += uDoCopy;
pfile_in_zip_read_info->stream.total_out += uDoCopy;
iRead += uDoCopy;
if (pfile_in_zip_read_info->rest_read_uncompressed == 0)
{
if (reached_eof != 0) *reached_eof = true;
}
}
else
{
uLong uTotalOutBefore, uTotalOutAfter;
const Byte *bufBefore;
uLong uOutThis;
int flush = Z_SYNC_FLUSH;
uTotalOutBefore = pfile_in_zip_read_info->stream.total_out;
bufBefore = pfile_in_zip_read_info->stream.next_out;
//
err = inflate(&pfile_in_zip_read_info->stream, flush);
//
uTotalOutAfter = pfile_in_zip_read_info->stream.total_out;
uOutThis = uTotalOutAfter - uTotalOutBefore;
pfile_in_zip_read_info->crc32 = ucrc32(pfile_in_zip_read_info->crc32, bufBefore, (uInt)(uOutThis));
pfile_in_zip_read_info->rest_read_uncompressed -= uOutThis;
iRead += (uInt)(uTotalOutAfter - uTotalOutBefore);
if (err == Z_STREAM_END || pfile_in_zip_read_info->rest_read_uncompressed == 0)
{
if (reached_eof != 0) *reached_eof = true;
return iRead;
}
if (err != Z_OK) break;
}
}
if (err == Z_OK) return iRead;
return err;
}
// Give the current position in uncompressed data
z_off_t unztell (unzFile file)
{
unz_s *s;
file_in_zip_read_info_s *pfile_in_zip_read_info;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
return (z_off_t)pfile_in_zip_read_info->stream.total_out;
}
// return 1 if the end of file was reached, 0 elsewhere
int unzeof (unzFile file)
{
unz_s *s;
file_in_zip_read_info_s *pfile_in_zip_read_info;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
if (pfile_in_zip_read_info->rest_read_uncompressed == 0)
return 1;
else
return 0;
}
// Read extra field from the current file (opened by unzOpenCurrentFile)
// This is the local-header version of the extra field (sometimes, there is
// more info in the local-header version than in the central-header)
// if buf==NULL, it return the size of the local extra field that can be read
// if buf!=NULL, len is the size of the buffer, the extra header is copied in buf.
// the return value is the number of bytes copied in buf, or (if <0) the error code
int unzGetLocalExtrafield (unzFile file, voidp buf, unsigned len)
{
unz_s *s;
file_in_zip_read_info_s *pfile_in_zip_read_info;
uInt read_now;
uLong size_to_read;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
size_to_read = (pfile_in_zip_read_info->size_local_extrafield -
pfile_in_zip_read_info->pos_local_extrafield);
if (buf == NULL)
return (int)size_to_read;
if (len > size_to_read)
read_now = (uInt)size_to_read;
else
read_now = (uInt)len ;
if (read_now == 0)
return 0;
if (lufseek(pfile_in_zip_read_info->file, pfile_in_zip_read_info->offset_local_extrafield + pfile_in_zip_read_info->pos_local_extrafield, SEEK_SET) != 0)
return UNZ_ERRNO;
if (lufread(buf, (uInt)size_to_read, 1, pfile_in_zip_read_info->file) != 1)
return UNZ_ERRNO;
return (int)read_now;
}
// Close the file in zip opened with unzipOpenCurrentFile
// Return UNZ_CRCERROR if all the file was read but the CRC is not good
int unzCloseCurrentFile (unzFile file)
{
int err = UNZ_OK;
unz_s *s;
file_in_zip_read_info_s *pfile_in_zip_read_info;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
if (pfile_in_zip_read_info->rest_read_uncompressed == 0)
{
if (pfile_in_zip_read_info->crc32 != pfile_in_zip_read_info->crc32_wait)
err = UNZ_CRCERROR;
}
if (pfile_in_zip_read_info->read_buffer != 0)
{
void *buf = pfile_in_zip_read_info->read_buffer;
zfree(buf);
pfile_in_zip_read_info->read_buffer = 0;
}
pfile_in_zip_read_info->read_buffer = NULL;
if (pfile_in_zip_read_info->stream_initialised)
inflateEnd(&pfile_in_zip_read_info->stream);
pfile_in_zip_read_info->stream_initialised = 0;
if (pfile_in_zip_read_info != 0) zfree(pfile_in_zip_read_info); // unused pfile_in_zip_read_info=0;
s->pfile_in_zip_read = NULL;
return err;
}
// Get the global comment string of the ZipFile, in the szComment buffer.
// uSizeBuf is the size of the szComment buffer.
// return the number of byte copied or an error code <0
int unzGetGlobalComment (unzFile file, char *szComment, uLong uSizeBuf)
{
//int err=UNZ_OK;
unz_s *s;
uLong uReadThis ;
if (file == NULL) return UNZ_PARAMERROR;
s = (unz_s *)file;
uReadThis = uSizeBuf;
if (uReadThis > s->gi.size_comment) uReadThis = s->gi.size_comment;
if (lufseek(s->file, s->central_pos + 22, SEEK_SET) != 0) return UNZ_ERRNO;
if (uReadThis > 0)
{
*szComment = ‘\0‘;
if (lufread(szComment, (uInt)uReadThis, 1, s->file) != 1) return UNZ_ERRNO;
}
if ((szComment != NULL) && (uSizeBuf > s->gi.size_comment)) *(szComment + s->gi.size_comment) = ‘\0‘;
return (int)uReadThis;
}
int unzOpenCurrentFile (unzFile file, const char *password);
int unzReadCurrentFile (unzFile file, void *buf, unsigned len);
int unzCloseCurrentFile (unzFile file);
typedef unsigned __int32 lutime_t; // define it ourselves since we don‘t include time.h
FILETIME timet2filetime(const lutime_t t)
{
LONGLONG i = Int32x32To64(t, 10000000) + 116444736000000000;
FILETIME ft;
ft.dwLowDateTime = (DWORD) i;
ft.dwHighDateTime = (DWORD)(i >> 32);
return ft;
}
FILETIME dosdatetime2filetime(WORD dosdate, WORD dostime)
{
// date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980
// time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23
SYSTEMTIME st;
st.wYear = (WORD)(((dosdate >> 9) & 0x7f) + 1980);
st.wMonth = (WORD)((dosdate >> 5) & 0xf);
st.wDay = (WORD)(dosdate & 0x1f);
st.wHour = (WORD)((dostime >> 11) & 0x1f);
st.wMinute = (WORD)((dostime >> 5) & 0x3f);
st.wSecond = (WORD)((dostime & 0x1f) * 2);
st.wMilliseconds = 0;
FILETIME ft;
SystemTimeToFileTime(&st, &ft);
return ft;
}
class TUnzip {
public:
TUnzip(const char *pwd) : uf(0), unzbuf(0), currentfile(-1), czei(-1), password(0) {
if (pwd != 0) {
password = new char[strlen(pwd) + 1];
strcpy(password, pwd);
}
}
~TUnzip() {
if (password != 0) delete[] password;
password = 0;
if (unzbuf != 0) delete[] unzbuf;
unzbuf = 0;
}
unzFile uf;
int currentfile;
ZIPENTRY cze;
int czei;
char *password;
char *unzbuf; // lazily created and destroyed, used by Unzip
TCHAR rootdir[MAX_PATH]; // includes a trailing slash
ZRESULT Open(void *z, unsigned int len, DWORD flags);
ZRESULT Get(int index, ZIPENTRY *ze);
ZRESULT Find(const TCHAR *name, bool ic, int *index, ZIPENTRY *ze);
ZRESULT Unzip(int index, void *dst, unsigned int len, DWORD flags);
ZRESULT SetUnzipBaseDir(const TCHAR *dir);
ZRESULT Close();
};
ZRESULT TUnzip::Open(void *z, unsigned int len, DWORD flags)
{
if (uf != 0 || currentfile != -1) return ZR_NOTINITED;
//
#ifdef GetCurrentDirectory
GetCurrentDirectory(MAX_PATH, rootdir);
#else
_tcscpy(rootdir, _T("\\"));
#endif
TCHAR lastchar = rootdir[_tcslen(rootdir) - 1];
if (lastchar != ‘\\‘ && lastchar != ‘/‘) _tcscat(rootdir, _T("\\"));
//
if (flags == ZIP_HANDLE)
{
// test if we can seek on it. We can‘t use GetFileType(h)==FILE_TYPE_DISK since it‘s not on CE.
DWORD res = SetFilePointer(z, 0, 0, FILE_CURRENT);
bool canseek = (res != 0xFFFFFFFF);
if (!canseek) return ZR_SEEK;
}
ZRESULT e;
LUFILE *f = lufopen(z, len, flags, &e);
if (f == NULL) return e;
uf = unzOpenInternal(f);
if (uf == 0) return ZR_NOFILE;
return ZR_OK;
}
ZRESULT TUnzip::SetUnzipBaseDir(const TCHAR *dir)
{
_tcscpy(rootdir, dir);
TCHAR lastchar = rootdir[_tcslen(rootdir) - 1];
if (lastchar != ‘\\‘ && lastchar != ‘/‘) _tcscat(rootdir, _T("\\"));
return ZR_OK;
}
ZRESULT TUnzip::Get(int index, ZIPENTRY *ze)
{
if (index < -1 || index >= (int)uf->gi.number_entry) return ZR_ARGS;
if (currentfile != -1) unzCloseCurrentFile(uf);
currentfile = -1;
if (index == czei && index != -1)
{
memcpy(ze, &cze, sizeof(ZIPENTRY));
return ZR_OK;
}
if (index == -1)
{
ze->index = uf->gi.number_entry;
ze->name[0] = 0;
ze->attr = 0;
ze->atime.dwLowDateTime = 0;
ze->atime.dwHighDateTime = 0;
ze->ctime.dwLowDateTime = 0;
ze->ctime.dwHighDateTime = 0;
ze->mtime.dwLowDateTime = 0;
ze->mtime.dwHighDateTime = 0;
ze->comp_size = 0;
ze->unc_size = 0;
return ZR_OK;
}
if (index < (int)uf->num_file) unzGoToFirstFile(uf);
while ((int)uf->num_file < index) unzGoToNextFile(uf);
unz_file_info ufi;
char fn[MAX_PATH];
unzGetCurrentFileInfo(uf, &ufi, fn, MAX_PATH, NULL, 0, NULL, 0);
// now get the extra header. We do this ourselves, instead of
// calling unzOpenCurrentFile &c., to avoid allocating more than necessary.
unsigned int extralen, iSizeVar;
unsigned long offset;
int res = unzlocal_CheckCurrentFileCoherencyHeader(uf, &iSizeVar, &offset, &extralen);
if (res != UNZ_OK) return ZR_CORRUPT;
if (lufseek(uf->file, offset, SEEK_SET) != 0) return ZR_READ;
unsigned char *extra = new unsigned char[extralen];
if (lufread(extra, 1, (uInt)extralen, uf->file) != extralen)
{
delete[] extra;
return ZR_READ;
}
//
ze->index = uf->num_file;
TCHAR tfn[MAX_PATH];
#ifdef UNICODE
MultiByteToWideChar(CP_UTF8, 0, fn, -1, tfn, MAX_PATH);
#else
strcpy(tfn, fn);
#endif
// As a safety feature: if the zip filename had sneaky stuff
// like "c:\windows\file.txt" or "\windows\file.txt" or "fred\..\..\..\windows\file.txt"
// then we get rid of them all. That way, when the programmer does UnzipItem(hz,i,ze.name),
// it won‘t be a problem. (If the programmer really did want to get the full evil information,
// then they can edit out this security feature from here).
// In particular, we chop off any prefixes that are "c:\" or "\" or "/" or "[stuff]\.." or "[stuff]/.."
const TCHAR *sfn = tfn;
for (;;)
{
if (sfn[0] != 0 && sfn[1] == ‘:‘)
{
sfn += 2;
continue;
}
if (sfn[0] == ‘\\‘)
{
sfn++;
continue;
}
if (sfn[0] == ‘/‘)
{
sfn++;
continue;
}
const TCHAR *c;
c = _tcsstr(sfn, _T("\\..\\"));
if (c != 0)
{
sfn = c + 4;
continue;
}
c = _tcsstr(sfn, _T("\\../"));
if (c != 0)
{
sfn = c + 4;
continue;
}
c = _tcsstr(sfn, _T("/../"));
if (c != 0)
{
sfn = c + 4;
continue;
}
c = _tcsstr(sfn, _T("/..\\"));
if (c != 0)
{
sfn = c + 4;
continue;
}
break;
}
_tcscpy(ze->name, sfn);
// zip has an ‘attribute‘ 32bit value. Its lower half is windows stuff
// its upper half is standard unix stat.st_mode. We‘ll start trying
// to read it in unix mode
unsigned long a = ufi.external_fa;
bool isdir = (a & 0x40000000) != 0;
bool readonly = (a & 0x00800000) == 0;
//bool readable= (a&0x01000000)!=0; // unused
//bool executable=(a&0x00400000)!=0; // unused
bool hidden = false, system = false, archive = true;
// but in normal hostmodes these are overridden by the lower half...
int host = ufi.version >> 8;
if (host == 0 || host == 7 || host == 11 || host == 14)
{
readonly = (a & 0x00000001) != 0;
hidden = (a & 0x00000002) != 0;
system = (a & 0x00000004) != 0;
isdir = (a & 0x00000010) != 0;
archive = (a & 0x00000020) != 0;
}
ze->attr = 0;
if (isdir) ze->attr |= FILE_ATTRIBUTE_DIRECTORY;
if (archive) ze->attr |= FILE_ATTRIBUTE_ARCHIVE;
if (hidden) ze->attr |= FILE_ATTRIBUTE_HIDDEN;
if (readonly) ze->attr |= FILE_ATTRIBUTE_READONLY;
if (system) ze->attr |= FILE_ATTRIBUTE_SYSTEM;
ze->comp_size = ufi.compressed_size;
ze->unc_size = ufi.uncompressed_size;
//
WORD dostime = (WORD)(ufi.dosDate & 0xFFFF);
WORD dosdate = (WORD)((ufi.dosDate >> 16) & 0xFFFF);
FILETIME ftd = dosdatetime2filetime(dosdate, dostime);
FILETIME ft;
LocalFileTimeToFileTime(&ftd, &ft);
ze->atime = ft;
ze->ctime = ft;
ze->mtime = ft;
// the zip will always have at least that dostime. But if it also has
// an extra header, then we‘ll instead get the info from that.
unsigned int epos = 0;
while (epos + 4 < extralen)
{
char etype[3];
etype[0] = extra[epos + 0];
etype[1] = extra[epos + 1];
etype[2] = 0;
int size = extra[epos + 2];
if (strcmp(etype, "UT") != 0)
{
epos += 4 + size;
continue;
}
int flags = extra[epos + 4];
bool hasmtime = (flags & 1) != 0;
bool hasatime = (flags & 2) != 0;
bool hasctime = (flags & 4) != 0;
epos += 5;
if (hasmtime)
{
lutime_t mtime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24);
epos += 4;
ze->mtime = timet2filetime(mtime);
}
if (hasatime)
{
lutime_t atime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24);
epos += 4;
ze->atime = timet2filetime(atime);
}
if (hasctime)
{
lutime_t ctime = ((extra[epos + 0]) << 0) | ((extra[epos + 1]) << 8) | ((extra[epos + 2]) << 16) | ((extra[epos + 3]) << 24);
epos += 4;
ze->ctime = timet2filetime(ctime);
}
break;
}
//
if (extra != 0) delete[] extra;
memcpy(&cze, ze, sizeof(ZIPENTRY));
czei = index;
return ZR_OK;
}
ZRESULT TUnzip::Find(const TCHAR *tname, bool ic, int *index, ZIPENTRY *ze)
{
char name[MAX_PATH];
#ifdef UNICODE
WideCharToMultiByte(CP_UTF8, 0, tname, -1, name, MAX_PATH, 0, 0);
#else
strcpy(name, tname);
#endif
int res = unzLocateFile(uf, name, ic ? CASE_INSENSITIVE : CASE_SENSITIVE);
if (res != UNZ_OK)
{
if (index != 0) *index = -1;
if (ze != NULL)
{
ZeroMemory(ze, sizeof(ZIPENTRY));
ze->index = -1;
}
return ZR_NOTFOUND;
}
if (currentfile != -1) unzCloseCurrentFile(uf);
currentfile = -1;
int i = (int)uf->num_file;
if (index != NULL) *index = i;
if (ze != NULL)
{
ZRESULT zres = Get(i, ze);
if (zres != ZR_OK) return zres;
}
return ZR_OK;
}
void EnsureDirectory(const TCHAR *rootdir, const TCHAR *dir)
{
if (rootdir != 0 && GetFileAttributes(rootdir) == 0xFFFFFFFF) CreateDirectory(rootdir, 0);
if (*dir == 0) return;
const TCHAR *lastslash = dir, *c = lastslash;
while (*c != 0)
{
if (*c == ‘/‘ || *c == ‘\\‘) lastslash = c;
c++;
}
const TCHAR *name = lastslash;
if (lastslash != dir)
{
TCHAR tmp[MAX_PATH];
memcpy(tmp, dir, sizeof(TCHAR) * (lastslash - dir));
tmp[lastslash - dir] = 0;
EnsureDirectory(rootdir, tmp);
name++;
}
TCHAR cd[MAX_PATH];
*cd = 0;
if (rootdir != 0) _tcscpy(cd, rootdir);
_tcscat(cd, dir);
if (GetFileAttributes(cd) == 0xFFFFFFFF) CreateDirectory(cd, NULL);
}
ZRESULT TUnzip::Unzip(int index, void *dst, unsigned int len, DWORD flags)
{
if (flags != ZIP_MEMORY && flags != ZIP_FILENAME && flags != ZIP_HANDLE) return ZR_ARGS;
if (flags == ZIP_MEMORY)
{
if (index != currentfile)
{
if (currentfile != -1) unzCloseCurrentFile(uf);
currentfile = -1;
if (index >= (int)uf->gi.number_entry) return ZR_ARGS;
if (index < (int)uf->num_file) unzGoToFirstFile(uf);
while ((int)uf->num_file < index) unzGoToNextFile(uf);
unzOpenCurrentFile(uf, password);
currentfile = index;
}
bool reached_eof;
int res = unzReadCurrentFile(uf, dst, len, &reached_eof);
if (res <= 0)
{
unzCloseCurrentFile(uf);
currentfile = -1;
}
if (reached_eof) return ZR_OK;
if (res > 0) return ZR_MORE;
if (res == UNZ_PASSWORD) return ZR_PASSWORD;
return ZR_FLATE;
}
// otherwise we‘re writing to a handle or a file
if (currentfile != -1) unzCloseCurrentFile(uf);
currentfile = -1;
if (index >= (int)uf->gi.number_entry) return ZR_ARGS;
if (index < (int)uf->num_file) unzGoToFirstFile(uf);
while ((int)uf->num_file < index) unzGoToNextFile(uf);
ZIPENTRY ze;
Get(index, &ze);
// zipentry=directory is handled specially
if ((ze.attr & FILE_ATTRIBUTE_DIRECTORY) != 0)
{
if (flags == ZIP_HANDLE) return ZR_OK; // don‘t do anything
const TCHAR *dir = (const TCHAR *)dst;
bool isabsolute = (dir[0] == ‘/‘ || dir[0] == ‘\\‘ || (dir[0] != 0 && dir[1] == ‘:‘));
if (isabsolute) EnsureDirectory(0, dir);
else EnsureDirectory(rootdir, dir);
return ZR_OK;
}
// otherwise, we write the zipentry to a file/handle
HANDLE h;
if (flags == ZIP_HANDLE) h = dst;
else
{
const TCHAR *ufn = (const TCHAR *)dst;
// We‘ll qualify all relative names to our root dir, and leave absolute names as they are
// ufn="zipfile.txt" dir="" name="zipfile.txt" fn="c:\\currentdir\\zipfile.txt"
// ufn="dir1/dir2/subfile.txt" dir="dir1/dir2/" name="subfile.txt" fn="c:\\currentdir\\dir1/dir2/subfiles.txt"
// ufn="\z\file.txt" dir="\z\" name="file.txt" fn="\z\file.txt"
// This might be a security risk, in the case where we just use the zipentry‘s name as "ufn", where
// a malicious zip could unzip itself into c:\windows. Our solution is that GetZipItem (which
// is how the user retrieve‘s the file‘s name within the zip) never returns absolute paths.
const TCHAR *name = ufn;
const TCHAR *c = name;
while (*c != 0)
{
if (*c == ‘/‘ || *c == ‘\\‘) name = c + 1;
c++;
}
TCHAR dir[MAX_PATH];
_tcscpy(dir, ufn);
if (name == ufn) *dir = 0;
else dir[name - ufn] = 0;
TCHAR fn[MAX_PATH];
bool isabsolute = (dir[0] == ‘/‘ || dir[0] == ‘\\‘ || (dir[0] != 0 && dir[1] == ‘:‘));
if (isabsolute)
{
wsprintf(fn, _T("%s%s"), dir, name);
EnsureDirectory(0, dir);
}
else
{
wsprintf(fn, _T("%s%s%s"), rootdir, dir, name);
EnsureDirectory(rootdir, dir);
}
//
h = CreateFile(fn, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, ze.attr, NULL);
}
if (h == INVALID_HANDLE_VALUE) return ZR_NOFILE;
unzOpenCurrentFile(uf, password);
if (unzbuf == 0) unzbuf = new char[16384];
DWORD haderr = 0;
//
for (; haderr == 0;)
{
bool reached_eof;
int res = unzReadCurrentFile(uf, unzbuf, 16384, &reached_eof);
if (res == UNZ_PASSWORD)
{
haderr = ZR_PASSWORD;
break;
}
if (res < 0)
{
haderr = ZR_FLATE;
break;
}
if (res > 0)
{
DWORD writ;
BOOL bres = WriteFile(h, unzbuf, res, &writ, NULL);
if (!bres)
{
haderr = ZR_WRITE;
break;
}
}
if (reached_eof) break;
if (res == 0)
{
haderr = ZR_FLATE;
break;
}
}
if (!haderr) SetFileTime(h, &ze.ctime, &ze.atime, &ze.mtime); // may fail if it was a pipe
if (flags != ZIP_HANDLE) CloseHandle(h);
unzCloseCurrentFile(uf);
if (haderr != 0) return haderr;
return ZR_OK;
}
ZRESULT TUnzip::Close()
{
if (currentfile != -1) unzCloseCurrentFile(uf);
currentfile = -1;
if (uf != 0) unzClose(uf);
uf = 0;
return ZR_OK;
}
ZRESULT lasterrorU = ZR_OK;
unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf, unsigned int len)
{
if (code == ZR_RECENT) code = lasterrorU;
const TCHAR *msg = _T("unknown zip result code");
switch (code)
{
case ZR_OK:
msg = _T("Success");
break;
case ZR_NODUPH:
msg = _T("Culdn‘t duplicate handle");
break;
case ZR_NOFILE:
msg = _T("Couldn‘t create/open file");
break;
case ZR_NOALLOC:
msg = _T("Failed to allocate memory");
break;
case ZR_WRITE:
msg = _T("Error writing to file");
break;
case ZR_NOTFOUND:
msg = _T("File not found in the zipfile");
break;
case ZR_MORE:
msg = _T("Still more data to unzip");
break;
case ZR_CORRUPT:
msg = _T("Zipfile is corrupt or not a zipfile");
break;
case ZR_READ:
msg = _T("Error reading file");
break;
case ZR_PASSWORD:
msg = _T("Correct password required");
break;
case ZR_ARGS:
msg = _T("Caller: faulty arguments");
break;
case ZR_PARTIALUNZ:
msg = _T("Caller: the file had already been partially unzipped");
break;
case ZR_NOTMMAP:
msg = _T("Caller: can only get memory of a memory zipfile");
break;
case ZR_MEMSIZE:
msg = _T("Caller: not enough space allocated for memory zipfile");
break;
case ZR_FAILED:
msg = _T("Caller: there was a previous error");
break;
case ZR_ENDED:
msg = _T("Caller: additions to the zip have already been ended");
break;
case ZR_ZMODE:
msg = _T("Caller: mixing creation and opening of zip");
break;
case ZR_NOTINITED:
msg = _T("Zip-bug: internal initialisation not completed");
break;
case ZR_SEEK:
msg = _T("Zip-bug: trying to seek the unseekable");
break;
case ZR_MISSIZE:
msg = _T("Zip-bug: the anticipated size turned out wrong");
break;
case ZR_NOCHANGE:
msg = _T("Zip-bug: tried to change mind, but not allowed");
break;
case ZR_FLATE:
msg = _T("Zip-bug: an internal error during flation");
break;
}
unsigned int mlen = (unsigned int)_tcslen(msg);
if (buf == 0 || len == 0) return mlen;
unsigned int n = mlen;
if (n + 1 > len) n = len - 1;
_tcsncpy(buf, msg, n);
buf[n] = 0;
return mlen;
}
typedef struct
{
DWORD flag;
TUnzip *unz;
} TUnzipHandleData;
HZIP OpenZipInternal(void *z, unsigned int len, DWORD flags, const char *password)
{
TUnzip *unz = new TUnzip(password);
lasterrorU = unz->Open(z, len, flags);
if (lasterrorU != ZR_OK)
{
delete unz;
return 0;
}
TUnzipHandleData *han = new TUnzipHandleData;
han->flag = 1;
han->unz = unz;
return (HZIP)han;
}
HZIP OpenZipHandle(HANDLE h, const char *password)
{
return OpenZipInternal((void *)h, 0, ZIP_HANDLE, password);
}
HZIP OpenZip(const TCHAR *fn, const char *password)
{
return OpenZipInternal((void *)fn, 0, ZIP_FILENAME, password);
}
HZIP OpenZip(void *z, unsigned int len, const char *password)
{
return OpenZipInternal(z, len, ZIP_MEMORY, password);
}
ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze)
{
ze->index = 0;
*ze->name = 0;
ze->unc_size = 0;
if (hz == 0)
{
lasterrorU = ZR_ARGS;
return ZR_ARGS;
}
TUnzipHandleData *han = (TUnzipHandleData *)hz;
if (han->flag != 1)
{
lasterrorU = ZR_ZMODE;
return ZR_ZMODE;
}
TUnzip *unz = han->unz;
lasterrorU = unz->Get(index, ze);
return lasterrorU;
}
ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze)
{
if (hz == 0)
{
lasterrorU = ZR_ARGS;
return ZR_ARGS;
}
TUnzipHandleData *han = (TUnzipHandleData *)hz;
if (han->flag != 1)
{
lasterrorU = ZR_ZMODE;
return ZR_ZMODE;
}
TUnzip *unz = han->unz;
lasterrorU = unz->Find(name, ic, index, ze);
return lasterrorU;
}
ZRESULT UnzipItemInternal(HZIP hz, int index, void *dst, unsigned int len, DWORD flags)
{
if (hz == 0)
{
lasterrorU = ZR_ARGS;
return ZR_ARGS;
}
TUnzipHandleData *han = (TUnzipHandleData *)hz;
if (han->flag != 1)
{
lasterrorU = ZR_ZMODE;
return ZR_ZMODE;
}
TUnzip *unz = han->unz;
lasterrorU = unz->Unzip(index, dst, len, flags);
return lasterrorU;
}
ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h)
{
return UnzipItemInternal(hz, index, (void *)h, 0, ZIP_HANDLE);
}
ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn)
{
return UnzipItemInternal(hz, index, (void *)fn, 0, ZIP_FILENAME);
}
ZRESULT UnzipItem(HZIP hz, int index, void *z, unsigned int len)
{
return UnzipItemInternal(hz, index, z, len, ZIP_MEMORY);
}
ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir)
{
if (hz == 0)
{
lasterrorU = ZR_ARGS;
return ZR_ARGS;
}
TUnzipHandleData *han = (TUnzipHandleData *)hz;
if (han->flag != 1)
{
lasterrorU = ZR_ZMODE;
return ZR_ZMODE;
}
TUnzip *unz = han->unz;
lasterrorU = unz->SetUnzipBaseDir(dir);
return lasterrorU;
}
ZRESULT CloseZipU(HZIP hz)
{
if (hz == 0)
{
lasterrorU = ZR_ARGS;
return ZR_ARGS;
}
TUnzipHandleData *han = (TUnzipHandleData *)hz;
if (han->flag != 1)
{
lasterrorU = ZR_ZMODE;
return ZR_ZMODE;
}
TUnzip *unz = han->unz;
lasterrorU = unz->Close();
delete unz;
delete han;
return lasterrorU;
}
bool IsZipHandleU(HZIP hz)
{
if (hz == 0) return false;
TUnzipHandleData *han = (TUnzipHandleData *)hz;
return (han->flag == 1);
}
标签:random rap sea objects unicode one === -- while
原文地址:https://www.cnblogs.com/veis/p/13062174.html