码迷,mamicode.com
首页 > 其他好文 > 详细

6.keras-基于CNN网络的Mnist数据集分类

时间:2020-06-08 00:39:40      阅读:70      评论:0      收藏:0      [点我收藏+]

标签:ada   rop   cal   vat   转化   add   set   plot   flat   

keras-基于CNN网络的Mnist数据集分类

1.数据的载入和预处理

import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import SGD,Adam
from keras.regularizers import l2
from keras.utils.vis_utils import plot_model
from matplotlib import pyplot as plt

import os

import tensorflow as tf

# 载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()

# 预处理
# 将(60000,28,28)转化为(-1,28,28,1),最后1是图片深度

x_train = x_train.reshape(-1,28,28,1)/255.0
x_test= x_test.reshape(-1,28,28,1)/255.0
# 将输出转化为one_hot编码
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)

2.创建网络打印训练数据# 创建网络

model = Sequential([
   
    # 创建卷积层提取特征,对卷积核进行正则化
    Conv2D(input_shape=(28,28,1),filters=32,kernel_size=5,strides=1,padding=same,activation=relu,kernel_regularizer=l2(0.01)), 
   # 池化层,对特征的筛选
   MaxPool2D(pool_size=(2,2),strides=2,padding=same), Flatten(),
  
   Dense(units=128,input_dim=784,bias_initializer=one,activation=tanh),
    Dropout(0.2),
    Dense(units=10,bias_initializer=one,activation=softmax)
])

# 编译
# 自定义优化器
sgd = SGD(lr=0.1)
adma = Adam(lr=0.001)
# 运用交叉熵
model.compile(optimizer=adma,
              loss=categorical_crossentropy,
              # 得到训练过程中的准确率
              metrics=[accuracy])

model.fit(x_train,y_train,batch_size=32,epochs=10,validation_split=0.2)

# 评估模型
loss,acc = model.evaluate(x_test,y_test,)
print(\ntest loss,loss)
print(test acc,acc)

out:

Epoch 1/10

32/48000 [..............................] - ETA: 10:18 - loss: 2.7563 - acc: 0.1562
96/48000 [..............................] - ETA: 3:53 - loss: 2.6141 - acc: 0.1354

......

......

Epoch 10/10

45952/48000 [===========================>..] - ETA: 0s - loss: 0.0664 - acc: 0.9905
47616/48000 [============================>.] - ETA: 0s - loss: 0.0663 - acc: 0.9908
48000/48000 [==============================] - 2s 37us/step - loss: 0.0663 - acc: 0.9910 - val_loss: 0.0149 - val_acc: 0.9884

 

32/10000 [..............................] - ETA: 4s
3360/10000 [=========>....................] - ETA: 0s
5824/10000 [================>.............] - ETA: 0s
8512/10000 [========================>.....] - ETA: 0s
10000/10000 [==============================] - 0s 20us/step

test loss 0.015059704356454312
test acc 0.988

6.keras-基于CNN网络的Mnist数据集分类

标签:ada   rop   cal   vat   转化   add   set   plot   flat   

原文地址:https://www.cnblogs.com/wigginess/p/13062891.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!